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a  b  s  t  r  a  c  t

The  polar  requirement  is an attribute  of amino  acids  that  is  a  major  determinant  of the  structure  and
function  of  the  proteins,  and  it plays  a role  in  the  flexibility  and  robustness  of  the  genetic  code.  The
viability  of an  organism  depends  on flexibility,  which  allows  the  exploration  of new  functions.  However,
robustness  is necessary  to protect  the  organism  from  deleterious  changes  derived  from  misreading  errors
and  single-point  mutations.  Compared  with  random  codes,  the  standard  genetic  code  is  one  of  the  most
robust  against  such  errors.  Here,  using  analytical  and numerical  calculations  and  the  set  of  amino  acid-
encoding  codons,  we  have  proposed  some  local  conditions  that  are  necessary  for  the  optimal  robustness
of  the genetic  code,  and  we explored  the  association  between  the  local  conditions  and  the  robustness.  The
localness  of  the  proposed  conditions  and the underlying  evolutionary  mechanism,  which  begins  with  a
random  code  and progresses  toward  more  efficient  codes  (e.g.,  the  standard  code),  might  be  biologically
plausible.

©  2016  Elsevier  Ireland  Ltd.  All  rights  reserved.

1. Introduction

A genetic code is a relationship between a set of codons and a
set of amino acids and one stop signal; each codon corresponds
to either one amino acid or the stop signal. Through this code, the
sequences of amino acids that form proteins can be encoded as
sequences of codons. Errors in this process can modify the func-
tions of proteins, producing organisms with either increased or
decreased viability. Therefore, it is interesting to study two nec-
essary attributes, robustness and flexibility, of the genetic code
(Maeshiro and Kimura, 1998). Specifically, with respect to the
robustness, here we study local conditions in the space of the
codons of the genetic code; these conditions are derived from a
global stability condition.

Given a known molecular environment, the function of proteins
results from the structural and dynamic consequences of several
physical and chemical attributes of amino acids. In this regard, the
polar requirement of amino acids, which increases with hydropho-
bicity (Woese et al., 1966), is one of the most important factors that
is evaluated in studies of evolution of the genetic code. To inves-
tigate the robustness of the genetic code, the codon-associated
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changes in amino acid polar requirement are usually considered;
these changes can result from a misreading error or a single-point
mutation, such that a codon is replaced by any of its neighboring
codons. Then, the stability of any genetic code can be estimated by
a measurement error, specifically the average of the squared differ-
ences of polar requirements (Haig and Hurst, 1991; Freeland and
Hurst, 1998). As we  will see below, based on the formalism showed
by Buhrman et al. (2011), a graph can be associated with the genetic
code to provide a theoretical framework for these calculations.

Let G =
(

V, Ep

)
be an undirected graph with a set V of 61

codons as vertices and a set Ep composed of the all edges between
any two codons having differences in just a single position (i.e.,
adjacent codons), such as a single-point mutation. By convention,
in the casep = 0, the difference between neighboring codons is
at any position of the codon. Instead, if the single-point mutation is
restricted to the first, second or third position of the codon, the cases
are termed p = 1, p = 2 and p = 3, respectively. Thus, we
define E0 as the set of edges between any two adjacent codons.
Similarly, E1, E2 and E3 are the sets of edges between two adjacent
codons but only for changes in the first, second and third position of
the codon, respectively. These sets are disjoint, and E0 = E1 ∪

E2 ∪ E3 (Buhrman et al., 2011).
Codons are denoted by the triplet ijk,  with i, j, k ∈ B ={
A, C, G, U

}
, that is, the set of nucleotides represented by

their component bases. Let F be a function mapping each amino
acid-encoding codon ijk to one amino acid F(ijk), and let r be a
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Table  1
Comparison between the LE(p) values of the standard genetic code and the codes
for  either the completely random model or the fixed standard block model. Mean
values are shown with their variance. Calculations are from the same data as used
in  Fig. 1.

LE(0) LE(1) LE(2) LE(3)

Completely random model 7.04 ± 1.17 8.85 ± 1.42 9.07 ± 1.46 9.07 ± 1.46
Fixed standard block model 4.67 ± 0.85 8.81 ± 1.78 9.43 ± 1.91 3.57 ± 1.08
Standard genetic code 2.0400 4.8093 7.5956 0.6482

function mapping each amino acid F(ijk) to a polar requirement
rijk ≡ r(F(ijk)). In other words, for 20 standard amino acids and
61 non-stop codons, each ijk codon is associated with an rijk value,
which is equal to the polar requirement of the amino acid F(ijk). In
this article, for a genetic code (i.e., F), the rijkvalues are taken from
the values of polar requirement in Table 1 of the work of Haig and
Hurst (1991).

Then, the error function MS(p) can be defined as

MS(p) = 1
|Ep|

∑
{ijk,i′j′k′} ∈ Ep

(
rijk − ri′j′k′

)2
(1)

with |Ep| equal to the cardinality of the set Ep. Then, for only the 61
codons encoding amino acids in the standard genetic code, |E0| =

263, |E1| = 87, |E2| = 88, and |E3| = 88 (Buhrman et al.
2011).

The function MS  defined above is a measure that can be applied
to random or natural genetic codes, such as the standard genetic
code. For a code, the codons encoding the same amino acid or stop
signal form a set of synonymous codons or block (Here we use the
word “block” as in Goldman (1993), Freeland and Hurst (1998),
Freeland et al. (2000) and Buhrman et al. (2011), and not as in other
works, such as in Novozhilov et al. (2007)). A completely random
model corresponds to genetic codes formed by randomly generated
blocks with random assignment of the amino acids and stop signal.
Instead, in a more restricted case, blocks can be fixed (for any degen-
eration and composition of codons), although amino acids and the
stop signal are still randomly assigned; this model is known as the
fixed block model (Goldman, 1993). Using MS(p) values, compar-
isons have been performed elsewhere between the standard code
and codes that follow a particular fixed block model; this type of
model employs the same standard block structure as that of the
standard code. We  named the latter model of genetic code a fixed
standard block model.  All genetic codes used in this article consider
61 and 3 codons that encode 20 amino acids and one stop signal,
respectively, regardless of the selected model of code. However, the
3 stop codons are not included in the calculations.

The MS  measure has been previously studied by Haig and
Hurst (1991, 1999) using the standard code and 10,000 randomly
generated codes following the fixed standard block model. The
researchers studied all cases of single-nucleotide substitutions cor-
responding to any of the three positions of codons (p = 0).
Moreover, they studied changes restricted to a fixed single posi-
tion of codons (depending on whether p = 1, 2 or 3), and
they considered other attributes of amino acids besides the polar
requirement, such as the molecular volume, hydropathy and iso-
electric point. For the polar requirement withMS, the standard

code had one of the higher values for the robustness of error (i.e.,
one of the lower MS  values) compared to those of randomly gen-
erated codes, and this robustness was  greater than that for the
other amino acid attributes. Freeland and Hurst (1998) corrobo-
rated these results using one million randomly generated codes.
They found that for the measure of error MS(0), 114 genetic codes
had lower values than the standard genetic code. That is, these
codes were more robust than the standard genetic code. They also
evaluated changing a codon by a single nucleotide at a fixed posi-
tion of the codon, i.e., they also applied the MS(p, ) measure on
the graph G =

(
V, Ep

)
for p = 1, 2 or 3. For the MS(p)

measure, their results showed that the robustness of the standard
genetic code is better in the third position of the codon and worse
in the second position of the codon. Through a heuristic method,
Goldman (1993) found a code with a lower value of MS(p) than
the values for any of the constructed codes. Buhrman et al. (2011)
demonstrated that this heuristic code corresponds to the global
optimum, that is, the most robust code.

Knowledge about the conditions required for a genetic code to
have maximal stability could be useful for theories about the evolu-
tion of the genetic code. Moreover, many artificial amino acids can
currently be used to synthesize proteins; thus, knowing the con-
ditions of maximum stability would be useful for generating new
and more robust genetic codes.

In this article, we  deduce some local conditions for the space of
codons, and we determine whether these conditions are sufficient
and necessary for the minimum of the MS(p) function, which is
associated with a stable genetic code.

2. Theoretical framework and results

For a minimum of MS(p), we have

∂MS(p)
∂rabc

|
rabc = r∗

abc

= 0 ∀ a, b , c ∈ B (2)

From Eq. (2), it is possible to deduce a general local stability
condition for rabc = r∗

abc
.

Case p = 0
From Eq. (1) and p = 0,

MS(0) = 1
2|E0|

⎡
⎣ ∑

i,j,k,i′ ∈ B

(
rijk − ri′jk

)2 +
∑

i,j,k,j′ ∈ B

(
rijk − rij′k

)2 +
∑

i,j,k,k′ ∈ B

(
rijk − rijk′

)2

⎤
⎦ (3)

The derivative of MS(0) is taken:
∂MS(0)

∂rabc

= 1
|E0|

∑
i,j,k,i′ ∈ B

(
rijk − ri′ jk

) ∂

∂rabc

(
rijk − ri′ jk

)
+

+ 1
|E0|

∑
i,j,k,j′ ∈ B

(
rijk − rij′k

) ∂

∂rabc

(
rijk − rij′k

)
+

+ 1
|E0|

∑
i,j,k,k′ ∈ B

(
rijk − rijk′

) ∂

∂rabc

(
rijk − rijk′

)
(4)

The first summation is calculated as
∑

i,j,k,i′ ∈ B

(
rijk − ri′jk

) ∂
∂rabc

(
rijk − ri′jk

)
=

= 2
∑

i,j,k,i′ ∈ B

rijk
∂

∂rabc

(
rijk

)
− 2

∑
i,j,k,i′ ∈ B

rijk
∂

∂rabc

(
ri′jk

)
= 2

∑
i′ ∈ B

rabc − 2
∑

i ∈ B

ribc =

= 8rabc − 2rabc − 2
∑

i /=  a, i ∈ B

ribc = 6rabc − 2
∑

i /= a, i ∈ B

ribc

(5)
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