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We propose a new geometric approach to describe the qualitative dynamics of chemical reactions
networks. By this method we identify metastable regimes, defined as low dimensional regions of the
phase space close to which the dynamics is much slower compared to the rest of the phase space. These
metastable regimes depend on the network topology and on the orders of magnitude of the kinetic
parameters. Benchmarking of the method on a computational biology model repository suggests that
the number of metastable regimes is sub-exponential in the number of variables and equations. The
dynamics of the network can be described as a sequence of jumps from one metastable regime to another.
We show that a geometrically computed connectivity graph restricts the set of possible jumps. We also
provide finite state machine (Markov chain) models for such dynamic changes. Applied to signal trans-
duction models, our approach unravels dynamical and functional capacities of signalling pathways, as
well as parameters responsible for specificity of the pathway response. In particular, for a model of TGF
signalling, we find that the ratio of TGFBR2 to TGFBR1 receptors concentrations can be used to discrim-
inate between metastable regimes. Using expression data from the NCI60 panel of human tumor cell
lines, we show that aggressive and non-aggressive tumour cell lines function in different metastable
regimes and can be distinguished by measuring the relative concentrations of receptors of the two

types.
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1. Introduction

Networks of biochemical reactions are used in computational
biology as models of signalling, metabolism, and gene regulation.
For various applications it is important to understand how the
dynamics of these models depend on internal parameters, ini-
tial data and environment variables. Traditionally, the dynamics
of biochemical networks is studied in the framework of chemi-
cal kinetics that can be either deterministic (ordinary differential
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equations) or stochastic (continuous time Markov processes). In
order to cope with qualitative data, Boolean (Kauffman, 1969;
Thomas, 1973) or multi-valued networks (Thomas, 1991; Naldi
et al., 2007) are used instead of continuous models. For this reason,
many efforts were focused on coarse graining dynamical networks
described by ordinary differential equations (ODE) to Boolean
networks (Davidich and Bornholdt, 2008). However, in spite of their
advantages, dynamical properties of large Boolean or multi-valued
networks are still difficult to study. The difficulty originates from
the number of possible states, which for multi-valued networks
with mlevels (Boolean networks correspond to m=2)and nnodes is
m". Although there are efficient methods for computing attractors
of Boolean networks (algorithms based on binary decision diagrams
or on satisfiability solvers can handle synchronous networks with
hundreds of variables, Dubrova and Teslenko, 2011), more intricate
dynamical properties like the metastable regimes discussed in this
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Fig. 1. Abstract representation of metastability as itinerant trajectory in a patchy
phase space landscape. Dominant vector fields (red arrows) confine the trajectory
to low dimensional patches on which act weak uncompensated vector fields (blue
arrows). A typical trajectory contains slow segments within patches where dom-
inant vector fields cancel, and transitions between patches in the fast direction
of uncancelled dominant vector fields. Continuous (but non smooth) connections
are also possible, corresponding to role reversal between dominant and dominated
vector fields. The term crazy-quilt was coined to describe such a patchy landscape
(Gorban and Radulescu, 2008). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

paper, ask for comprehensive analysis of the state transition graph
which is hard to perform and moreover for analysis of the hierarchy
of time scales which is even harder for Boolean and multi-valued
networks. The coarse graining method proposed in this paper leads
to a drastic reduction of the number of states. This offers unprece-
dented possibilities for qualitative analysis of the dynamics.

In this paper we propose a new method for model analysis that
uses coarse grained descriptions of continuous dynamics as discrete
automata defined on finite states. These states will not be obtained
by discretization of network variables, but by identification of a
finite number of collective modes describing possible coordinated
activity of several variables.

For large networks with ordinary differential equations dynam-
icsand multiple timescales it is reasonable to consider the following
property: a typical trajectory consists in a succession of quali-
tatively different slow segments separated by faster transitions.
The slow segments, generally called metastable states or regimes,
can be of several types such as attractive invariant manifolds
(Gorban and Karlin, 2005), Milnor attractors (Rabinovich et al.,
2006) or saddle connections (Rabinovich et al., 2012). The notion
of metastability generalizes the notion of attractor. Like in the case
of attractors, distant parts of the system can have coordinated
activity for metastability. The dynamical states of large networks
can be represented as points in a high dimensional space, called
phase space. In this representation each coordinate represents the
concentration of a molecular species. Coordinated activity means
that many of the species concentrations are correlated, which can
be geometrically represented by the proximity to a lower dimen-
sion hypersurface in the phase space. A system remains in the
proximity of an attractor after entering its basin of attraction,
but can leave a metastable regime after a relatively long time
(much longer than the time needed for transitions between two
different regimes). Fig. 1 summarizes this geometrical picture.
The term crazy-quilt was coined to describe such a patchy land-
scape of multiscale networks dynamics (Gorban and Radulescu,
2008).

This phenomenon, called itinerancy, received particular atten-
tion in neuroscience (Tsuda, 1991). Itinerant behaviour is shown by

mathematical models with stable heteroclinic sequences (defined
as open chains of saddle fixed points connected by one-dimensional
separatrices) and was also observed in transient activity of anten-
nal lobe neurons involved in insect olfaction or in the activity of
high vocal centers controlling songbird patterns (Rabinovich et al.,
2006). We believe that similar phenomena occur in molecular
biology for chemical reaction networks. A well studied example
sustaining this picture is the biochemical and gene expression
dynamics guiding the orderly progression of the cell cycle. The
main feature of this dynamics is the sequential activation of cyclin
dependent kinase/cyclin complexes. More than 30 years since
cyclins were discovered the main cell cycle control events are now
well understood and it is agreed that each of them involve the
collective action of several regulator molecules. In addition, stud-
ies of periodic gene expression in synchronized cell division of
yeast show the existence of waves of coordinate expression corre-
sponding to different cell cycle phases or transitions (Rustici et al.,
2004). Furthermore, mathematical models of the cell cycle machin-
ery (currently more than 150 published models, Weis et al., 2014)
illustrate the stage dependent coordination of biochemical vari-
ables. As an example, the structure of steady state branches of the
Wee1-Cdc25 module in yeast lead Tyson et al. (2002) to consider
that the exit from mitosis is a collective phenomenon that can be
described as a saddle-node bifurcation. Our analysis of such models
also showed that branches and bifurcations of states occur natu-
rally in the context of cell cycle modelling (Noel et al., 2012). In a
more general context, geometric analysis of single-cell expression
data from human and mouse tissues showed that gene expres-
sion is structured in clusters but also in continua of states within
polyhedra whose vertices can be understood as specialized key
tasks (Korem et al., 2015). These findings were interpreted in terms
of multi-objective optimization solutions (Korem et al., 2015),
but could also suggest transient behaviour between specialized
states. The idea of associating cell lineage commitment to collec-
tive behaviour of gene networks variables was used in many other
contexts including cancer genomics where it was proposed that
cancer cells are trapped in some abnormal attractors (Huang et al.,
2009).

In this paper we propose a method to compute metastable
dynamical regimes and the transitions between such regimes for
chemical reaction networks. This will provide a precise meaning
to the “crazy-quilt” metaphor illustrated in Fig. 1. To this aim we
will use tropical geometry methods. Tropical methods (Litvinov,
2007; Maclagan and Sturmfels, 2015), also known as idempo-
tent or max-plus algebras owe their name to the fact that one of
the pioneer of the field, Imre Simon, was Brazilian. These meth-
ods found numerous applications to computer science (Simon,
1988), physics (Litvinov, 2007), railway traffic (Chang, 1998), and
statistics (Pachter and Sturmfels, 2004 ). Recently we have applied
these methods to model order reduction (Noel et al., 2012, 2014;
Radulescu et al., 2015b; Samal et al., 2015b). In these works we
have used tropical methods to rank monomial terms into rate vec-
tors according to their orders of magnitude and to identify lowest
order, dominant terms. When there is only one dominant term or
when the dominant terms have all the same sign, the dynamics
is fast and the system tends rapidly towards a region in phase
space where at least two dominant terms of opposite signs are
equilibrated. We have called the latter situation tropical equili-
bration (Noel et al., 2014; Radulescu et al., 2015b; Samal et al.,
2015b). In this paper, we use tropical equilibrations to identify
metastable dynamic regimes of chemical reaction networks. We
show that tropical equilibrations can be grouped into branches
and describe the qualitative network dynamics as a sequence of
transitions from one branch to another. The complexity of the qual-
itative dynamics depends on the number of branches. Therefore,
we would like to know how this number depends on the number
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