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a  b  s  t  r  a  c  t

Boolean  networks  (and more  general  logic  models)  are  useful  frameworks  to study  signal  transduction
across  multiple  pathways.  Logic  models  can be learned  from  a prior  knowledge  network  structure  and
multiplex  phosphoproteomics  data.  However,  most  efficient  and  scalable  training  methods  focus  on  the
comparison  of two  time-points  and  assume  that  the  system  has  reached  an  early  steady  state.  In  this
paper,  we  generalize  such  a learning  procedure  to take  into  account  the time  series  traces  of  phospho-
proteomics  data  in  order  to discriminate  Boolean  networks  according  to  their  transient  dynamics.  To that
end, we  identify  a necessary  condition  that  must  be satisfied  by  the dynamics  of  a  Boolean  network  to  be
consistent  with  a discretized  time  series  trace.  Based  on this  condition,  we  use  Answer  Set  Programming
to  compute  an  over-approximation  of the  set  of  Boolean  networks  which  fit  best  with  experimental  data
and provide  the  corresponding  encodings.  Combined  with  model-checking  approaches,  we  end up with a
global  learning  algorithm.  Our  approach  is  able  to  learn  logic  models  with  a  true positive  rate  higher  than
78%  in two  case  studies  of  mammalian  signaling  networks;  for  a larger  case  study,  our method  provides
optimal  answers  after  7 min  of computation.  We  quantified  the  gain  in our method  predictions  precision
compared  to  learning  approaches  based  on static  data.  Finally,  as an  application,  our  method  proposes
erroneous  time-points  in the time  series  data  with  respect  to the  optimal  learned  logic models.

©  2016  Elsevier  Ireland  Ltd.  All  rights  reserved.

1. Introduction

Generic prior knowledge about canonical cell signaling
networks can be retrieved from database sources. This provides a
first insight on how cells respond to their environment by trigg-
ering processes such as growth, survival, apoptosis (cell death),
and migration. However, little is known about the exact chain-
ing and composition of signaling events within these networks in
specific cells and in response to specific experimental perturba-
tions, as provided by the simulations of predictive mathematical
models, e.g. a set of differential equations or a set of logic rules.
When building predictive models, the parameters of a model (built
according to generic prior knowledge) can be fitted to the data
to obtain the most plausible model for a specific cell type, if
enough experimental data is available. This is normally achieved by
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defining an objective fitness function to be optimized. In this
context, post-translational modifications, notably protein phos-
phorylation, play a key role in signaling. They are very useful for
the training of model parameters through the use of multiplex
phosphorylation assays, a recent form of high-throughput data
providing information about protein-activity modifications in a
specific cell type upon various experimental perturbations (clam-
ping) (Alexopoulos et al., 2010).

Boolean logical networks (Kauffman, 1969) provide a simple yet
powerful qualitative framework which has become very popular
during the last decade to model signaling or regulatory networks
(Wang et al., 2012). In contrast to quantitative methods which
permit fine-grained kinetic analysis, qualitative approaches allow
for addressing large-scale biological networks. In this context, the
manual identification of logic rules underlying the system has been
addressed under different hypotheses and methods (Berestovsky
and Nakhleh, 2013). In particular, scalable methods restrain them-
selves to learning models from two  time points (start; end) and
assume the system has reached an early steady-state when the
measurements are performed. As shown in MacNamara et al.
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(2012), this assumption prevents capturing important character-
istics of signaling networks such as feedback cycles.

Data-driven methods for learning causal graphs representing
molecular networks have been widely proposed (Bansal et al., 2007;
Smet and Marchal, 2010; Maetschke et al., 2014). We  here focus
on methods learning causal graphs from time series data. Some of
such methods use ODE’s kinetic modeling to build dynamic pre-
dictive models from time series gene expression data (Busch et al.,
2008; Porreca et al., 2010). Recently, a crowdsourcing challenge
was proposed to learn causal graphs for breast cancer cell lines
using multiplex phosphoproteomic time series data. The results
in Hill et al. (2016) show that methods based on machine learn-
ing techniques, using only data and no prior knowledge network,
obtained a significant score. This study reported as well that meth-
ods using prior-knowledge outperformed methods solely based on
data. Having said that, the task of evaluation of such methods is
very delicate since an exhaustive experimental verification of a
small-scale causal graph is not feasible. Furthermore, other types of
evaluation such as verifying model predictions, do not necessarily
require a causal graph model structure. The approach we  propose
here belongs to the category of methods that use time series phos-
phoproteomics data and a prior-knowledge graph to infer logical
causal models that can be simulated a-posteriori using synchronous
or asynchronous updates.

Our method infers Boolean networks (BNs) from time series
datasets and it scales to the size of currently studied BNs. Given
multiplex time series data from the measurement of a partial set
of biological entities under different experimental perturbations,
we want to identify all the BNs that have a structure compatible
with a given prior knowledge interaction graph and that can repro-
duce all the (experimentally) observed time series. Time series
data are assumed incomplete, i.e., only a subset of network com-
ponents are observed, with measurements made at discrete time
points and with normalized continuous values. It is possible that no
BN, constrained by the prior interaction graph, reproduces all the
input time series. In such a case, we introduce a fitness function
to measure the distance between a trace of a BN simulation and
a measured time series. Therefore, we aim to infer the BNs whose
dynamics contains traces with the best fitness to all measurements.

Our approach relies on the combination of several techniques.
First, we introduce a necessary condition for discretized time series
data to be the trace of a BN. This provides an over-approximation
of the successive reachability properties, allowing to reject BNs
which cannot reproduce the time series without a costly exhaustive
analysis of the dynamics. Then, we use Answer Set Programming
(ASP) to enumerate BNs which approximate the best experimen-
tal data while satisfying the necessary condition on the dynamics.
As a result, we obtain a set of BNs associated with traces which
both satisfy the necessary condition and optimally fit with exper-
imental data. Because of the over-approximation of reachability, a
part of the returned BNs cannot reproduce the associated Boolean
traces. Such false positives can be detected a posteriori using model-
checking on the returned results.

This paper extends the results presented in Ostrowski et al.
(2015) in several ways: a complete and detailed characterization
of the method, illustrated step by step with a toy example; a
detailed description of the ASP implementation of the inference
and optimization, together with justifications for the computation
of the fitness of predictions and experimental observations; and
with a general benchmark, composed of three case studies, which
increases the diversity of networks against which we evaluate our
method.

In order to evaluate our method we used synthetic data
generated from BNs of three mammalian signaling networks
induced by the: (i) Epidermal Growth Factor (EGF) and Tumor
Necrosis Factor alpha (TNF˛), (ii) T-cell Receptor (TCR), and (iii)

Epidermal Growth Factor Receptor (ERBB). These networks have
between 13–40 nodes and 16–50 edges and contain multiple cycles.
Our prototype implementation was able to identify efficiently all
BNs satisfying the necessary condition with a rate of true positi-
ves over 78% for networks of less than 25 edges. We  measured the
impact of incomplete networks on the precision of learned BNs; and
estimated the added-value of models identified with our method on
the full time series with respect to models learned from two  time
points, considered as a steady state. Finally we present an appli-
cation of this method to detect erroneous time-points in the time
series data with respect to the learned BNs.

2. Boolean network identification

2.1. Admissible Boolean networks and multiplex time series data

Boolean networks (BNs). A BN with n components {1, . . .,  n} con-
sists of a tuple of n Boolean functions F = (f1, . . .,  fn) where each

function fi : Bn → B,  B
�={0, 1}, i ∈ {1, . . .,  n}, associates with each

global state x ∈ Bn of the network the next value of the ith compo-
nent. The value of the i-th component in x is denoted xi.

As a toy example that is used all along the present article, let us
consider the BN depicted in Fig. 1b with four components nI,  nJ,  nA,
and nB in B associated to the following Boolean functions:

F :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

fnI(nI, nJ, nA, nB)  = 0

fnJ(nI, nJ, nA, nB)  = ¬ nI

fnA(nI, nJ, nA, nB)  = nI ∧ ¬ nB

fnB(nI, nJ, nA, nB)  = nJ ∨ nA

Transition relation and associated semantics. The transitions
between global states of the network are specified with a transition
relation → ⊆ Bn × Bn. The transitive closure of → is denoted by
→*. Given x, x′ ∈ Bn, x → *x′ if and only if, either x = x′ or x → · · · → x′.

Several definitions of the transition relation → can be used
depending on the update schedule of the components (Aracena
et al., 2009), ranging from so-called parallel (or synchronous)
updates where each transition updates the value of all the compo-
nents, to the asynchronous update where each transition updates
the value of only one component chosen non-deterministically.

As the over-approximation results presented in this article are
independent of the update schedule, we use the general defini-
tion, where any number of components can be updated during a
transition: for any x, x′ ∈ Bn,

x → x′ �⇔(x /= x′) ∧ (∀i ∈ {1, . . .,  n}, x′i /= xi ⇒ x′i = fi(x)). (1)

For example, in our toy example, we have that F(1, 1, 0, 0) = (1, 0,
1, 1). This means that three variables may  change their value from
the state (1, 1, 0, 0). Therefore, we  have that (1, 1, 0, 0) → (1, 0, 1, 1)
is a synchronous update scheme, whereas (1, 1, 0, 0) → (1, 0, 0, 0),
(1, 1, 0, 0) → (1, 1, 1, 0) and (1, 1, 0, 0) → (1, 0, 0, 1) are valid in an
asynchronous update. In our framework, we consider as valid the
eight transitions (1, 1, 0, 0) → (1, b, c, d) where b, c, d ∈ B.

Prior knowledge network and admissible BNs. An interaction graph
between n components is a digraph between nodes {1, . . .,  n} where
each edge is signed, i.e., either positive or negative. The interaction
graph of a BN F, noted IG(F), has a positive (resp. negative) edge
from node j to node i if and only if there exists x, x′ ∈ Bn which
are identical except on the j-th coordinate where xj = 0 and x′

j = 1
and such that fi(x) < fi(x′) (resp. fi(x) > fi(x′)). Notice that according
to this definition, an interaction may  contain multiple edges with
different signs. The interaction graph of our toy example is depicted
in Fig. 1a. Notice that in this graph nI is a specific node since it has
no predecessor. We call it an input node.
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