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Intelligent systems have emerged in our biosphere in different contexts and achieving different levels of
complexity. The requirement of communication in a social context has been in all cases a determinant.
The human brain, probably co-evolving with language, is an exceedingly successful example. Similarly,
social insects complex collective decisions emerge from information exchanges between many agents.
The difference is that such processing is obtained out of a limited individual cognitive power. Compu-
tational models and embodied versions using non-living systems, particularly involving robot swarms,
have been used to explore the potentiality of collective intelligence. Here we suggest a novel approach to
the problem grounded in the genetic engineering of unicellular systems, which can be modified in order
to interact, store memories or adapt to external stimuli in collective ways. What we label as Synthetic
Swarm Intelligence defines a parallel approach to the evolution of computation and swarm intelligence
and allows to explore potential embodied scenarios for decision making at the microscale. Here, we
consider several relevant examples of collective intelligence and their synthetic organism counterparts.
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1. Introduction

Intelligent behaviour has been defined as the ability to success-
fully operate in uncertain environments by adaptations based on
experience (Sternberg, 2000). To succeed, intelligent agents have to
be able to measure information, sense their inner and environment
states, and perform actions, receiving some kind of reward (Legg
and Hutter, 2006). Additionally, agents have to be able to store these
experiences and properly correlate experiences, becoming mem-
ory an additional item essential for systems adaptation and the
development of an intelligent behavior. Our biosphere is currently
populated by a plethora of information-processing entities. They
are different instances of life forms. As pointed by John Hopfield,
the ability to perform computations is a key feature of biological
organisms (Hopfield, 1994). Such special feature also distinguishes
biological phenomena from natural physical processes.

Among the major transitions that have punctuated the history
of life on our planet, several great steps involved novel ways of
manipulating information and adapting to the external world by
means of non-genetic mechanisms. These cellular, physiological,
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anatomical and behavioral innovations became a key factor in deal-
ing with complex environments. As organisms became capable of
processing information in complex ways, they were able of deal-
ing with uncertainty. Intelligent behaviour was largely responsible
for the success of costly multicellular systems as a consequence
of their potential for being autonomous agents capable of stor-
ing and processing epigenetic information. A milestone in this race
towards increasingly complex ways to process information was, as
Jablonka and Lamb (2006) pointed out, the emergence of the neural
individual:

“with a high level of internal integration and the ability to make
rapid adaptive responses. However, the emergence of the neural
individual meant more than a change in the nature and speed
of adaptation. Neural processing led to behaviour based on sen-
sory perception, and this in turn led to a form of communication
between individuals that did not require contact or the trans-
mission of physical material from one to the other. This mode of
information transmission had interesting consequences, one of
which was the ability of animals to learn from others through
perceiving their behaviour or the outcomes of their behaviour,
i.e. it led to social learning.”

Different kinds of neural structures can be identified within the
long road from cellular systems with simple sensors to full-fledged
brains (Rose, 2005). After cell membranes became complex enough,
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Fig. 1. Collective decision making in natural and artificial systems. Many different systems are capable of making decisions that are based on detecting and processing
information in ways that require population responses. In social insects, such as the army ants in (a), very large swarms emerge out from local interactions (Image by Alex
Wild, distributed under a CCO 1.0 license). Swarm robotics (b) has taken some advantage of these collective patterns. In microbial systems collective responses are often
associated to the formation of so called biofilms (c) where spatially structured organisations emerge (image by Ronn Friedlander and Michael Bucaro). In physiology too
organ-level functions, such as glucose regulation by the pancreas (d), result from sensing and responding to external signals (image by H.E. Farbung, distributed under a CC

2.5 license).

it became possible to process information in terms of chemical
signals and internal metabolic responses. Later on, movement, cou-
pled to these signalling phenomena, allowed autonomy to develop
beyond simple changes of metabolite concentrations. The rise of
multicellularity added a new potential for using specific types of
cells facing the external world, whereas the rest could be freed
from a direct interaction with the environment. As multicellular
life forms further evolved, something close to “behaviour” could be
defined.

Along with this neural individual, another major transition of
evolution led to the emergence of societies formed by relatively
simpler agents (such as ants, termites or bees) capable of perform-
ing complex cognitive actions at the collective level. Social insects
belong, at the individual level, to the ganglion-based organisation
of neural processing. But they reach a higher level of complexity
by making these already sophisticated systems to interact within a
much more complex, parallel and spatially distributed entity: the
super organism (Holldobler and Wilson, 2008). By means of their
potential for gathering and storing information, systems displaying
collective intelligence are capable of making decisions about their
internal states, environmental resources, protection against dam-
age or foraging strategies (Deneubourg and Goss, 1989; Camazine
et al., 2003). An example of these systems is given by army ants
(Fig. 1a) which are blind and communicate mostly by means of
pheromones, and yet involve millions of individuals that are capa-
ble of coherently exploring vast areas in the rain forests.

In some ways, collective intelligent systems, particularly ant
colonies, reminds us the way brains work (Hofstadter, 1979;
Gordon et al., 1991; Solé and Goodwin, 2001). However, in such
comparison ants must be seen as a fluid neural network (Solé et al.,
1993) since no stable connections between pairs of ants exist. To
a large extent, the cognitive potential associated to social insect
behaviour is tied to both individual and collective responses to
stimuli. On the one hand, ants and other social insects are capable

of responding in sharp, almost digital ways to external inputs
(Millonas, 1993; Gordon, 1999; Gordon, 2010; Camazine et al.,
2003; Detrain and Deneubourg, 2006; Sumpter, 2006), often by
exploiting bifurcations and nonlinearities as their source of inter-
nal structuring and decision making (Deneubourg et al.,, 1989;
Bonabeau et al., 1996a; Bonabeau et al., 1999). Such features have
been successfully implemented using swarms of robots (Fig. 1b).

The emergent field of synthetic biology gives us a novel
way of exploring collective intelligence. It provides the adequate
tools to modify and redesign living systems, instead of build-
ing artificial agents or making mathematical models. We could
properly claim that we can create living micro-robots by mod-
ifying the behavioural repertoire of existing cells. In this paper
we outline this synthetic biology path, using microbial engineered
designs. Microbes are capable of integrating sensory informa-
tion, store memories and display behavioural control (Ben-Jacob,
2009; Lambert and Kussell, 2014; Vladimirov and Sourjik, 2009).
They thus incorporate several relevant components required to
build or design complex decision making systems. However, the
types of computations and information processing systems exhib-
ited by microorganisms, are in many cases different from those
displayed by ant colonies. Is it possible to engineer bacteria or
other single-celled species in such a way that they behave as a
collective intelligence? We label this field as synthetic collective
intelligence (SCI). Such type of collective response can be found in
biofilms (Fig. 1¢) and some general principles are common to tissues
(Fig. 1d).

Microbial systems are composed by non-neural agents (Reid
et al., 2015). Their potential for performing computations in a col-
lective fashion is determined by their self-organisation properties
(2001). These include nonlinear dynamics, emergent behaviour and
multistability. In this paper we aim to present several well defined
examples of how to design a synthetic living system that is capable
of capturing the key features of collective intelligence.
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