Contents lists available at ScienceDirect

ELSEVIER

European Journal of Pharmaceutics and Biopharmaceutics

journal homepage: www.elsevier.com/locate/ejpb

## Technical note Glass-forming ability of compounds in marketed amorphous drug products

### Nicole Wyttenbach<sup>a</sup>, Martin Kuentz<sup>b,\*</sup>

<sup>a</sup> Roche Pharmaceutical Research & Early Development, Pre-Clinical CMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, Switzerland <sup>b</sup> Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland

#### ARTICLE INFO

Article history: Received 9 September 2016 Accepted in revised form 22 November 2016 Available online 27 November 2016

Keywords: Amorphous drug Solid dispersion Glass-forming ability Molecular prediction Physical stability

#### ABSTRACT

This note is about the glass-forming ability (GFA) of drugs marketed as amorphous solid dispersions or as pure amorphous compounds. A thermoanalytical method was complemented with an in *silico* study, which made use of molecular properties that were identified earlier as being relevant for GFA. Thus, molar volume together with effective numbers of torsional bonds and hydrogen bonding were used to map drugs that are as amorphous products on the market either as solid dispersion of without co-processed carrier as amorphous drug in a solid dosage form. Differential scanning calorimetry experiments showed that most compounds were stable glass formers (GFs) (class III) followed by so-called unstable GFs (class II) and finally, only vemurafenib was found in class I with increased crystallization propensity. The *in silico* results, however showed that all drugs were either clearly in the chemical space expected for GFs or they were borderline to the region that holds for high crystallization tendency. Interestingly, the pure amorphous compounds scattered in a very confined region of the molecular predictors. These findings can guide amorphous product development of future drug candidates. Based on the compound location in the given chemical space, amorphous formulation opportunities can be balanced against the risks of physical instability upon storage.

© 2016 Elsevier B.V. All rights reserved.

#### 1. Introduction

The glass-forming ability (GFA) of molecules has fascinated researchers since several decades. For undercooled melts, it was important to understand the concept of critical cooling rates that determine whether or not nucleation and growth can lead to crystallization [1]. A practical approach was to employ differential scanning calorimetry (DSC) for drug categorization from undercooled melts to tell stable glass formers (GFs) apart from nonglass formers (nGFs) [2]. The latter class I compounds crystallize directly in the first cooling cycle, whereas the stable GFs (class III) remain amorphous upon cooling and display a glass transition in a subsequent heating cycle. Some compounds alternatively crystallize in the second heat and were assigned to a category II. This group of unstable GFs is rather heterogeneous when considering rates of nucleation and growth, which has been discussed by Trasi et al. [3]. Another related interest has been to better understand

E-mail address: martin.kuentz@fhnw.ch (M. Kuentz).

which molecular properties affect GFA. Therefore, it has been tried to predict the categories based on molecular properties that were either selected from an empirical training model [4] or based on theoretical considerations of the Prigogine-Defay ratio [5]. The prediction of GFA has the obvious advantage that *in silico* calculations can replace DSC experiments where not sufficient compound is available at an early development stage. An *in silico* assessment is also helpful in cases where for example thermal instability prevents thermoanalytical categorization. While already several compounds have been assigned to GFA categories, there seems to be no systematic consideration of drugs that were successfully formulated for the pharmaceutical market (Table 1). The present study addresses this research gap and DSC analysis is presented combined with *in silico* categorization of compounds that are amorphous in marketed products.

#### 2. Materials and methods

#### 2.1. Materials

A series of drugs was selected that are as amorphous products on the market (Table 1). Drug compounds of high purity ( $\geq$ 96%)



CrossMark

<sup>\*</sup> Corresponding author at: University of Applied Sciences and Arts Northwestern Switzerland, Institute of Pharma Technology, Gründenstrasse 40, 4132 Muttenz, Switzerland.

| Table 1            |      |           |
|--------------------|------|-----------|
| Marketed amorphous | drug | products. |

| Compound                    | Trade name                                   | Manufacturer                         | Carrier          | Processing technology          | Dosage form |
|-----------------------------|----------------------------------------------|--------------------------------------|------------------|--------------------------------|-------------|
| Amorphous solid dispersions | (ASDs)                                       |                                      |                  |                                |             |
| Etravirine                  | Intelence®                                   | Janssen                              | HPMC             | Spray drying                   | Tablet      |
| Everolimus                  | Certican <sup>®</sup> /Zortress <sup>®</sup> | Novartis                             | HPMC             | Spray drying                   | Tablet      |
| Fenofibrate                 | Fenoglide®                                   | LifeCycle Pharma                     | PEG              | Spray melt                     | Tablet      |
| Griseofulvin                | Gris-PEG <sup>®</sup>                        | Novartis/Pedinol                     | PEG              | Melt extrusion                 | Tablet      |
| Itraconazole                | Sporanox <sup>®</sup> /                      | Janssen/                             | HPMC/            | Spray layering (bead coating)/ | Tablet/     |
|                             | Onmel <sup>®</sup>                           | GlaxoSmithKline/Stiefel              | PVP VA 64        | Melt extrusion                 | Tablet      |
| Ivacaftor                   | Kalydeco®                                    | Vertex                               | HPMCAS           | Spray drying                   | Tablet      |
| Lopinavir and Ritonavir     | Kaletra®                                     | AbbVie                               | PVP VA 64        | Melt extrusion                 | Tablet      |
| Nabilone                    | Cesamet®                                     | Lilly/Valeant                        | PVP              | Melt extrusion                 | Capsule     |
| Nifedipine                  | Afeditab <sup>®</sup> CR                     | Elan/Watson                          | Poloxamer or PVP | Melt/absorb on carrier         | Tablet      |
| Nilvadipine                 | Nivadil®                                     | Fujisawa                             | HPMC             | n.a. <sup>a</sup>              | Tablet      |
| Nimodipine                  | Nimotop <sup>®</sup>                         | Bayer                                | PEG              | Spray drying/fluid bed         | Tablet      |
| Posaconazole                | Noxafil®                                     | Merck                                | HPMCAS           | Melt extrusion                 | Tablet      |
| Ritonavir                   | Norvir®                                      | AbbVie                               | PVP VA 64        | Melt extrusion                 | Tablet      |
| Tacrolimus                  | Prograf <sup>®</sup> /                       | Astellas/Fujisawa/                   | HPMC/            | Spray drying/fluid bed/        | Capsule/    |
|                             | LCP-Tacro <sup>®</sup>                       | LifeCycle Pharma/Veloxis             | HPMC             | Melt granulation               | Tablet      |
| Telaprevir                  | Incivek <sup>®</sup> /Incivo <sup>®</sup>    | Vertex/Janssen                       | HPMCAS           | Spray drying                   | Tablet      |
| Troglitazone                | Rezulin <sup>®b</sup>                        | Pfizer (Parke-Davis)                 | PVP              | Melt extrusion                 | Tablet      |
| Vemurafenib                 | Zelboraf®                                    | Roche                                | HPMCAS           | Coprecipitation                | Tablet      |
| Verapamil hydrochloride     | Isoptin <sup>®</sup> SR-E 240                | AbbVie                               | HPC/HPMC         | Melt extrusion                 | Tablet      |
| Pure amorphous drugs        |                                              |                                      |                  |                                |             |
| Cefuroxime axetil           | Ceftin®                                      | GlaxoSmithKline                      | -                | _                              | Tablet      |
| Nelfinavir mesylate         | Viracept®                                    | Agouron/Pfizer/Roche/ViiV Healthcare | -                | _                              | Tablet      |
| Quinapril hydrochloride     | Accupril®                                    | Pfizer                               | -                | _                              | Tablet      |
| Rosuvastatin calcium        | Crestor®                                     | Shionogi/Astra Zeneca                | -                | _                              | Tablet      |
| Zafirlukast                 | Accolate®                                    | Astra Zeneca                         | _                | _                              | Tablet      |

<sup>a</sup> Not available.

<sup>b</sup> Recalled in 2000 due to toxicity issues.

were purchased from different commercial sources and were used as received without further purification. The identity and crystallinity of the drugs were verified by DSC and thermogravimetric analysis (TGA). Drug characteristics, suppliers, and purities are listed in Table 2.

#### 2.2. Differential scanning calorimetry

DSC thermograms were recorded with a DSC 1 instrument from Mettler-Toledo AG (Greifensee, Switzerland) as described in [5]. Briefly, samples (2-3 mg) were placed in  $40 \,\mu$ l aluminum pans

#### Table 2

Physico-chemical properties of compounds evaluated.

| Compound                             | Class     | $MW (g mol^{-1})$ | $I^{-1}$ ) $T_m (^{\circ}C)^a$ |           | $\Delta H_{f} (kJ mol^{-1}) T_{g} (^{\circ}C)$ |           | $T_g (°C)^a$ |      | Supplier                   | Purity           |
|--------------------------------------|-----------|-------------------|--------------------------------|-----------|------------------------------------------------|-----------|--------------|------|----------------------------|------------------|
| Amorphous solid dispersions (ASDs)   |           |                   |                                |           |                                                |           |              |      |                            |                  |
| Etravirine                           | Decomp.   | 435.3             | 254.2                          | ±0.4      | n.a.                                           | n.a.      | n.a.         | n.a. | Synthonix                  | 96%              |
| Everolimus                           | Amorphous | 958.2             | n.a.                           | n.a.      | n.a.                                           | n.a.      | 50.3         | ±0.1 | AK Scientific              | 98%              |
| Fenofibrate <sup>b</sup>             | II        | 360.8             | 81.2                           | ±0.0      | 33.7                                           | ±0.2      | -18.7        | ±0.6 | Sigma-Aldrich              | ≥99%             |
| Griseofulvin                         | III       | 352.8             | 218.5                          | ±0.1      | 40.5                                           | ±0.2      | 90.0         | ±0.2 | Sigma-Aldrich              | ≥97%             |
| Itraconazole <sup>b</sup>            | III       | 705.6             | 168.3                          | ±0.3      | 61.1                                           | ±0.5      | 59.2         | ±0.1 | Melrob-Eurolabs            | ≥98.5            |
| Ivacaftor                            | Decomp.   | 392.5             | 309.0                          | ±0.7      | n.a.                                           | n.a.      | n.a.         | n.a. | AK Scientific              | 99%              |
| Lopinavir <sup>c</sup>               | III       | 628.8             | $\sim 96$                      | n.a.      | n.a.                                           | n.a.      | 77.6         | ±0.1 | Acros                      | 98%              |
| Nifedipine <sup>b</sup>              | II        | 346.3             | 172.8                          | ±0.1      | 37.8                                           | ±0.1      | 46.8         | ±0.2 | Sigma-Aldrich              | ≥98%             |
| Nilvadipine                          | III       | 385.4             | 149.0                          | ±0.1      | 32.6                                           | ±0.3      | 45.5         | ±0.1 | Toronto Research Chemicals | 98%              |
| Nimodipine                           | III       | 418.4             | 124.6                          | ±0.1      | 37.9                                           | ±0.2      | 14.1         | ±0.2 | Sigma-Aldrich              | ≥98%             |
| Posaconazole                         | III       | 700.8             | 167.0                          | ±0.1      | 44.5                                           | ±0.7      | 60.4         | ±0.1 | AK Scientific              | 98%              |
| Ritonavir                            | III       | 721.0             | 122.2                          | ±0.1      | 63.8                                           | ±0.4      | 48.7         | ±0.1 | Sigma-Aldrich              | ≥98%             |
| Tacrolimus                           | III       | 804.0             | 123.3                          | ±0.2      | 30.1                                           | ±0.5      | 76.1         | ±0.5 | AK Scientific              | 98%              |
| Telaprevir                           | III       | 679.9             | 241.8                          | ±0.4      | 60.9                                           | ±1.0      | 101.0        | ±0.3 | AK Scientific              | 98%              |
| Troglitazone <sup>d</sup>            | II        | 441.5             | 111.3/154.4                    | ±1.9/±1.9 | 17.5/25.5                                      | ±1.2/±2.8 | 63.1         | ±0.1 | Focus Biomolecules         | >98%             |
| Vemurafenib                          | Ι         | 489.9             | 272.4                          | ±0.1      | 65.1                                           | ±0.1      | n.a.         | n.a. | Roche                      | 99.8%            |
| Verapamil hydrochloride              | III       | 491.1             | 143.1                          | ±0.2      | 54.5                                           | ±0.1      | 55.7         | ±0.4 | Sigma-Aldrich              | $\geqslant 99\%$ |
| Pure amorphous drugs                 |           |                   |                                |           |                                                |           |              |      |                            |                  |
| Cefuroxime axetil <sup>d</sup>       | Amorphous | 510.5             | n.a.                           | n.a.      | n.a.                                           | n.a.      | 77.4         | ±0.5 | Sigma-Aldrich              | ≥98%             |
| Nelfinavir mesylate                  | Amorphous | 663.9             | n.a.                           | n.a.      | n.a.                                           | n.a.      | 114.9        | ±0.3 | Sigma-Aldrich              | ≥98%             |
| Quinapril hydrochloride <sup>e</sup> | III       | 475.0             | $\sim 97$                      | n.a.      | n.a.                                           | n.a.      | 90.8         | ±0.1 | Alfa Aesar                 | 98%              |
| Rosuvastatin calcium <sup>f</sup>    | Amorphous | 500.6             | n.a.                           | n.a.      | n.a.                                           | n.a.      | n.a.         | n.a. | Acros                      | 98%              |
| Zafirlukast                          | III       | 575.7             | 194.8                          | ±0.1      | 19.6                                           | ±1.7      | 103.3        | ±0.3 | Focus Biomolecules         | >98%             |

<sup>a</sup> Melting points were determined as onset values and glass transition temperatures as midpoint values. Results expressed as mean (n = 3 for each compound).

<sup>b</sup> Data taken from [5].

<sup>c</sup> Hydrated crystal form (H<sub>2</sub>O:drug molar ratio  $\sim$ 1.4).

<sup>d</sup> Mixture of isomers.

 $^{\rm e}\,$  Hydrated crystal form (H2O:drug molar ratio  ${\sim}0.8$ ).

<sup>f</sup> Hemicalcium salt.

Download English Version:

# https://daneshyari.com/en/article/5521643

Download Persian Version:

https://daneshyari.com/article/5521643

Daneshyari.com