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Despite decades of research and an enormity of resultant data, cancer remains a significant public health prob-
lem. New tools and fresh perspectives are needed to obtain fundamental insights, to develop better prognostic
and predictive tools, and to identify improved therapeutic interventions. With increasingly common genome-
scale data, one suite of algorithms and concepts with potential to shed light on cancer biology is phylogenetics,
a scientific discipline used in diverse fields. From grouping subsets of cancer samples to tracing subclonal evolu-
tion during cancer progression and metastasis, the use of phylogenetics is a powerful systems biology approach.
Well-developed phylogenetic applications provide fast, robust approaches to analyze high-dimensional, hetero-
geneous cancer data sets. This article is part of a Special Issue entitled: Evolutionary principles - heterogeneity in
cancer?, edited by Dr. Robert A. Gatenby.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Cancer results from a breakdown in multicellular cooperation [1],
evolving changes in DNA sequence, gene expression patterns, and/or epi-
genetic modifications that permit unchecked growth. These molecular
changes induce phenotypes that can increase the ability of a cell to com-
pete, survive and reproduce, and ultimately lead to cancer. Advantageous
phenotypes include 1) self-sufficiency in growth signals, 2) insensitivity
to anti-growth signals, 3) evasion of apoptosis, 4) limitless replicative po-
tential, 5) sustained angiogenesis, 6) ability to invade and metastasize to
surrounding tissue and distant organs, 7) deregulated cellular energetics,
and 8) avoidance of immune destruction [2,3]. In many cases, these hall-
marks are the consequences of mutations that result in a cell with in-
creased fitness compared to its healthy counterparts, followed by
selective pressures that increase the prevalence of that cell lineage.

Continued rounds of mutation and selection putatively lead to more ex-
treme phenotypes in comparison to normal tissue, and thereby more ag-
gressive metastatic disease.

From the initial transforming event to dissemination, seeding, and
eventual metastatic colonization, cancer progression represents a pro-
cess of selection over time. Nowell first drew this parallel between the
selective forces acting on cancer cells within the body and those acting
on individuals within populations in nature [36]. Nowell proposed that
the heterogeneity observed in tumors is due to an increase in genetic in-
stability as cancer progresses [36]. Indeed, evidence of increased genetic
instability over time has been recently shown in the progression of
Barrett's esophagus to esophageal adenocarcinoma in a longitudinal
study of patients for over 20 years [37]. This increased genetic instability
enhances the genetic diversity of the cancer cell population, and pre-
sumably the phenotypic diversity as well, which is acted upon by selec-
tive forces within the tumor, such as immune surveillance, hypoxia,
glucose deprivation, and the production of reactive oxygen species, to
produce sub-clones capable of thriving despite the barriers to progres-
sion [38]. These concepts of increasing heterogeneity coupled with se-
lection in the context of cancer progression have been borne out by
studies using both first generation and next-generation sequencing
technologies [39]. For example, analysis of breast cancer primary and
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matched metastases found that just over half of the coding mutations
identified in the metastases (19/32) were not detected in the primary
tumor [40]. Of themutations common to the primary tumor andmetas-
tases, 6/13were found in only 1–13% of cells in the primary tumor [40].
Similarly, sequencing of pancreatic cancer primary tumors andmetasta-
ses revealed that different metastases are seeded from unique clones
[41]. These authors also concluded that metastatic clones may have
seeded tertiary subclones [41], though the physical history ofmetastatic
departures cannot be inferred from sequence data without a complete
sampling of clonal lineageswithin the primary tumor [42]. In the largest
multi-region sampling paper published to date, sampling of 40 patients
with primary tumors and 3–8 matched metastases demonstrated di-
verse patterns of molecular genetic divergence along the time course
of cancer progression [28]. These and other studies clearly demonstrate
that cancer progression, from indolent neoplasia to aggressive andmet-
astatic disease, is a process in which cells change in a spatio-temporal
manner while under selective forces.

Given that cancer progression is governed by selective forces, tools
developed to elucidate evolutionary relationships should generally be
appropriate for use in the analysis of cancer. One of the most well-
developed and successful evolutionary approaches is phylogenetics.
Originally designed to model and infer evolutionary relationships
among organisms, this suite of algorithms, concepts, and tools has
been usefully applied in a wide array of diverse fields, even fields in
which the data have no true evolutionary context [43–47]. Below, we
briefly review phylogenetic concepts and methods and discuss the
possibilities for the application of phylogenetics to analysis of cancer
data sets in the following three capacities: 1) as a suite of classification
algorithms that could be applied to assign specimens as coming from ei-
ther healthy individuals, patients with localized disease, or those with
metastasis; 2) as a means to deconstruct the complex heterogeneity
within tumors; and 3) as a natural method to determine the branching
evolution of cancer cells within individuals during cancer progression.

2. Phylogenetics: revealing relationships between states

The field of phylogenetic systematics was born from a need to sort
and classify organisms in such a way as to capture their relationships
by descent. Phylogenetics utilizes a data matrix of input characteristics
from a group of organisms (Fig. 1A) to produce a graphical “tree”
(Fig. 1B) where the branching pattern, or tree-topology, represents bi-
furcations between individuals, species, or higher taxa, depending on
the scope of the taxonomic question of interest. A phylogeny, or an
evolutionary tree, provides a basic structure to statistically analyze the
evolutionary relationships (differences and similarities) among distant-
ly-related taxa (species or larger groups of inclusively-related species).
The most recent common ancestor (MRCA) of a group is the node
furthest from the root that contains all members of the group as descen-
dants. Pairs of taxa that share amore recent common ancestor aremore
closely related than those whose MRCA occurs more deeply in the tree
(Fig. 1B). When numerous taxon divergences are represented along a
lineage, it becomes possible to chart the accumulation of traits or fea-
tures that have resulted from evolution over time. Tree topologies can
be rooted or unrooted. In a rooted tree, some extrinsic information is
used to root the tree. This information is typically in the form of an as-
sumed outgroup. Outgroups typically represent distantly-related taxa
that provide information on the ancestral condition (state) of a

character prior to its transformation to a more derived condition. In
principle, this use of outgroups enables the researcher to establish the
directionality of change for a set of characters [48], though it must be
cautioned that outgroups often have undergone significant evolution-
ary change themselves and are not always suitable proxies for the an-
cestor. Unlike rooted trees, unrooted trees reveal the relatedness of
taxa within the nodes of the tree without assuming a relationship of a
group of taxa to an ancestral state. Phylogenetic algorithms are widely
used in the study of the evolutionary dynamics of molecular sequences
themselves, using each homologous position in a sequence as an indi-
vidual character [49–51]. Moreover, phylogenetic methods can be ap-
plied to numerous types of data, including morphological
characteristics and/or other data that can be converted into discrete
character states, and even can be applied to quantitative characters
under appropriate models of evolutionary change.

3. Phylogenetic analysis of cancer data

The multiple and diverse paths of progression to cancer are forged
by genetic mutations and alterations to epigenetics, gene expression,
and protein signaling. Because these changes tend to accumulate over
time in diversifying somatic lineages, phylogenetic analysis provides a
natural tool set for evaluating the branching history of cancer onset
and progression. The development of these tools has been considered
an emerging field of inquiry, termed herein as PhyloOncology or Cancer
Phylogenetics, which represents diverse applications of phylogenetic al-
gorithms to the analysis of cancer data.We highlight below three gener-
al types of analyses in which phylogenetics has provided insight in the
understanding of cancer biology: 1) classification of cancer specimens
(Fig. 1C and D); 2) analyses of intratumoral heterogeneity (Fig. 1E and
F), and 3) tracking clonal evolution and progression (Fig. 1E and F).

3.1. Applying phylogenetic methods to classify gene expression profiles

The application of phylogenetics methods to the analysis of gene ex-
pression profiles from individual tumors may not be its most natural
usage, but does provide an alternative to other approaches for the clas-
sification of microarray or transcriptomic analyses, such as hierarchical
clustering (Fig. 1C). In this utilization of phylogenetics, genes can be
coded as the ‘characters’, expression levels can be coded as discrete
‘character states’, and individual samples can be the ‘taxa’ (Fig. 1C and
D). In one such discretization, gene expression changes can be convert-
ed into discrete character states based onwhether they are upregulated
(1), downregulated (−1), or effectively unchanged (0). Application of a
phylogenetically-based algorithm then produces one or more trees
based on the similarities and differences in gene-expression profiles,
putatively grouping (or classifying) cancer or disease tissues relative
to normal tissue expression profiles (Fig. 1D). In traditional phyloge-
netics, a distantly-related taxon is used as an outgroup; however, in
the analysis of cancer vs. normal tissue, the “outgroup” comprises either
a mixture of normal tissues from representative individuals or, ideally,
normal samples from the same individual as each tumor sample. A
number of studies using maximum parsimony [52–54] and distance
[55,56] algorithms on gene expression data have suggested that the
methodology classifies tumors into monophyletic groupings compared
to ‘normal’ tissue controls [57]. These analyses suggest that phylogenet-
ic algorithms or algorithms developed from phylogenetic algorithms

Fig. 1. Phylogenetics reveals evolutionary relationships between states. A. Characteristics from various species under study can be transformed into a binary character state matrix. A
species that is known to possess the ancestral state of the given characters (e.g. here, the lamprey) can be included as an “outgroup” as a means by which to polarize the resulting tree.
B. An unrooted most parsimonious tree obtained by choosing the topology requiring the fewest number of character changes. C. The unrooted tree is converted to a rooted tree by
assuming that jawed vertebrates share a more recent common ancestor than the most recent common ancestor (MRCA) of the entire group. C. As a cancer research tool, phylogenetic
analyses can be used strictly as a clustering algorithm to segregate individual patients by their progression status. D. Samples are collected from individual patients, a matrix of
characters is constructed using gene expression, mutation status, or some other information, and a phylogenetic tree is generated. E. In a more direct application of phylogenetic
methods, they can be used to analyze phenotypic/genotypic heterogeneity within a patient or disease location. In this example, samples are collected at different sites to construct a
matrix and tree of progression F. Depending on the question being asked, samples can be collected longitudinally or from neighboring areas of a tissue a single site (e.g. primary tumor
and metastatic nodules) to reconstruct the evolutionary history of the disease progression.
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