

Contents lists available at ScienceDirect

Cancer Letters

journal homepage: www.elsevier.com/locate/canlet

Original Article

Adoptive transfer of ex vivo expanded $V\gamma 9V\delta 2$ T cells in combination with zoledronic acid inhibits cancer growth and limits osteolysis in a murine model of osteolytic breast cancer

Aneta Zysk ^a, Mark O. DeNichilo ^a, Vasilios Panagopoulos ^a, Irene Zinonos ^a, Vasilios Liapis ^a, Shelley Hay ^a, Wendy Ingman ^b, Vladimir Ponomarev ^c, Gerald Atkins ^d, David Findlay ^d, Andrew Zannettino ^e, Andreas Evdokiou ^{a,*}

- a Discipline of Surgery, Breast Cancer Research Unit, Basil Hetzel Institute, University of Adelaide, Adelaide, South Australia, Australia
- ^b Discipline of Surgery, Breast Biology Cancer Unit, Basil Hetzel Institute, University of Adelaide, Adelaide, South Australia, Australia
- ^c Department of Radiology, Memorial Sloan-Kettering Cancer Centre, New York, USA
- ^d Discipline of Orthopaedics and Trauma, University of Adelaide, Adelaide, South Australia, Australia
- e School of Medical Sciences, Myeloma Research Laboratory Cancer Theme, South Australian Health and Medical Research Institute (SAHMRI), Faculty of Health Science, University of Adelaide, Australia

ARTICLE INFO

Article history: Received 6 September 2016 Received in revised form 7 November 2016 Accepted 8 November 2016

Keywords:

Metastasis Immunotherapy Bisphosphonate Osteoclast Tumour associated macrophage

ABSTRACT

Bone metastases occur in over 75% of patients with advanced breast cancer and are responsible for high levels of morbidity and mortality. In this study, ex vivo expanded cytotoxic $V\gamma9V\delta2$ T cells isolated from human peripheral blood were tested for their anti-cancer efficacy in combination with zoledronic acid (ZOL), using a mouse model of osteolytic breast cancer. In vitro, expanded $V\gamma 9V\delta 2$ T cells were cytotoxic against a panel of human breast cancer cell lines, and ZOL pre-treatment further sensitised breast cancer cells to killing by Vγ9Vδ2 T cells. Vγ9Vδ2 T cells adoptively transferred into NOD/SCID mice localised to osteolytic breast cancer lesions in the bone, and multiple infusions of $V\gamma9V\delta2$ T cells reduced tumour growth in the bone. ZOL pre-treatment potentiated the anti-cancer efficacy of $V\gamma 9V\delta 2$ T cells, with mice showing further reductions in tumour burden. Mice treated with the combination also had reduced tumour burden of secondary pulmonary metastases, and decreased bone degradation. Our data suggests that adoptive transfer of Vγ9Vδ2 T cell in combination with ZOL may prove an effective immunotherapeutic approach for the treatment of breast cancer bone metastases.

© 2016 Published by Elsevier Ireland Ltd.

Introduction

Breast cancer is one of the most commonly diagnosed cancers in women worldwide. Patients diagnosed with primary breast cancer have higher survival rates compared to those diagnosed with the advanced disease, primarily due to cancer metastases [1]. Bone metastases occur in over 75% of patients with advanced breast cancer, resulting in extensive bone degradation leading to skeletalrelated events (SREs) such as hypercalcemia, chronic pain, fracture, spinal cord compression, and impaired mobility, all which greatly

E-mail address: andreas.evdokiou@adelaide.edu.au (A. Evdokiou).

affect quality of life [2,3]. Breast cancer bone metastases are predominately osteolytic due to factors secreted by disseminated tumour cells that stimulate osteoclasts [4]. Activated osteoclasts degrade bone and release growth factors from the matrix that further promote tumour growth and bone destruction, perpetuating the 'vicious cycle' of cancer growth and bone destruction [5]. Nitrogen-containing bisphosphonates (nBPs), a class of antiresorptive drugs, are currently used to inhibit osteoclastmediated bone degradation in patients with skeletal malignancies, including advanced breast cancer, however, this treatment is only palliative and new therapeutic approaches are required

Within the past decade, immunotherapy of cytotoxic gamma delta $(\gamma \delta)$ T cells has been gaining momentum as a potential therapeutic approach for targeting cancer. Human $\gamma\delta$ T cells comprise a small population (1-10%) of circulating peripheral blood

^{*} Corresponding author. Breast Cancer Research Unit, Level 1, Basil Hetzel Institute, Queen Elizabeth Hospital, 28 Woodville Road, Woodville, South Australia, Australia. Fax: +61 8 8222 7451.

lymphocytes [8]. These primarily consist of the V δ 2 chain in combination with V γ 9 (V γ 9V δ 2) which are stimulated and expanded in response of phosphoantigens (PAgs).

Activated V γ 9V δ 2 T cells have the ability to recognise target cells in an MHC-unrestricted manner [9] via detection of PAgs, including isopentenyl pyrophosphate (IPP), an intermediate of the mammalian mevalonate pathway. nBPs, including zoledronic acid (ZOL) inhibit the mevalonate pathway resulting in IPP accumulation which activate and expand V γ 9V δ 2 T cells [10–16].

Due to abnormal upregulation of the mevalonate pathway, tumour cells accumulate PAgs resulting in recognition by $V\gamma 9V\delta 2$ T cells [17]. Activated $V\gamma 9V\delta 2$ T cells can then kill cancer cells by releasing Th1 cytokines, including TNF- α (tumour necrosis factoralpha) and IFN- γ (interferon-gamma) [18–20] and cytolytic granules [10,19–21]. $V\gamma 9V\delta 2$ T cells also induce target cell death by death receptor/ligand interactions with TRAIL (Apo2L) [21], and FASL (Fas ligand) [11]. As a result, expanded $V\gamma 9V\delta 2$ T cells exert potent cytotoxicity against a variety of solid and haematological malignancies, *in vitro* and *in vivo* [10–12,15,22,23].

 $V\gamma 9V\delta 2$ T cell immunotherapy has been assessed against a variety of solid and haematological malignancies in early phase clinical trials (reviewed in Ref. [24]). While these trials have deemed $V\gamma 9V\delta 2$ T cell therapy safe, as a monotherapy the anticancer efficacy, especially against advanced tumours has been underwhelming and requires further improvement. In addition to activating $V\gamma 9V\delta 2$ T cells, ZOL can also sensitise cancer cells to killing by $V\gamma 9V\delta 2$ T cells both *in vitro* and *in vivo* [13–15,21,25]. Additionally, clinical evidence demonstrates the potential of using $V\gamma 9V\delta 2$ T cell adoptive transfer in combination with ZOL for the treatment of advanced renal cell carcinoma (RCC), malignant ascites from gastric cancer, and other metastatic tumours [26–28].

As ZOL preferentially localises to the bone, an elegant approach for targeting cancer lesions in the bone has emerged. Discussion in the literature have suggested that nBP administration followed by adoptive transfer of V γ 9V δ 2 T cells would be an ideal two-pronged approach for targeting cancers in the bone [29]. This immunotherapy would allow simultaneous reduction of tumour-associated bone loss in addition to sensitising cancer cells to V γ 9V δ 2 T cell mediated cytotoxicity, inhibiting the vicious cycle of bone destruction and cancer growth. To date, adoptive transfer of V γ 9V δ 2 T cells alone or in combination with ZOL to specifically

Health Science Centre, San Antonio, Texas). MDA-MB231-TXSA expressed GFP and luciferase produced by retroviral expression of the SFG-NES-TGL vector, as previously described [30]. All cell lines were cultured in DMEM (Life Technologies, Australia) supplemented with 10% foetal bovine serum (FBS, Life Technologies, Australia), 100 IU/mL penicillin (Life Technologies, Australia), 100 μ g/mL treptomycin (Life Technologies, Australia), and 25 mM HEPES (Life Technologies, Australia) at 37 °C in a 5% CO2 humidified atmosphere. ZOL was generously provided by Novartis Pharma AG.

Ex vivo expansion of Vγ9Vô2 T cells

Informed consent was obtained prior to collection of peripheral blood from healthy adult donors. PBMC were isolated immediately via density gradient centrifugation using LymphoprepTM (Axis Shield, Norway) following manufacturer's instructions. PBMCs were resuspended to $1\times 10^6/\text{mL}$ in CTSTM OpTmizerTM T Cell Expansion SFM (Life Technologies, Australia) supplemented with OpTmizerTM T cell Expansion Supplement (1:38 dilution) (Life Technologies, Australia), 10% heatinactivated FBS (HI-FBS), 100 IU/mL penicillin, 100 µg/mL streptomycin, 2 mmol Lglutamine (Life Technologies, Australia), 25 mM HEPES, 0.1% β -mercaptoethanol (Sigma—Aldrich, USA), 100 IU/mL recombinant human interleukin 2 (rhIL-2) (BD Pharmingen, USA) and activated with 5 μ M ZOL, and seeded into 6-well plates. Cell culture density was maintained at $1-2\times 10^6$ cells/mL and replenished with fresh medium containing 100 IU/mL rhIL-2 only (without ZOL) every 2—3 days. Following 7—8 days of culture cells were collected and enriched as described below.

Enrichment of Vγ9Vδ2 T cells

Ex vivo expanded V γ 9V δ 2 T cells were enriched prior to in vitro and in vivo experiments using negative selection MACS with the TCR $\gamma/\delta+$ T cell Isolation Kit (human) (Miltenyi Biotec, Germany). Cell viability and total cells numbers after enrichment were assessed using trypan blue exclusion. Percentage of V γ 9V δ 2 T cells were determined by flow cytometry using PeCy5 conjugated anti-CD3 (clone UCHT1) (eBioscience, San Diego, CA, USA) and FITC conjugated anti-V γ 9 TCR from BD Biosciences (San Jose, CA, USA). Analysis was performed on the BD FACSCanto II Flow Cytometer (San Jose, CA, USA). Percentages of V γ 9V δ 2 T cells were identified by gating on the lymphocyte population using forward scatter/side scatter then on V γ 9+CD3+ double positive cells. After enrichment, V γ 9V δ 2 T cell viability was >95%, and the percentage of V γ 9V δ 2 T cells was consistently >97%.

Cell cytotoxicity assay

Cytotoxicity of V γ 9V $^{\circ}$ 2 T cells against breast cancer cell lines was assessed using a standard lactate dehydrogenase (LDH) release assay (CytoTox 96 $^{\circ}$ Non-Radioactive Cytotoxicity Assay; Promega, USA). Briefly, 1 \times 10 4 target cells were seeded in triplicate in a 96-well microtiter plate and allowed to adhere overnight. Target cells were then treated with or without 25 μ M ZOL for 24 h, and then co-cultured with V $^{\circ}$ 9V $^{\circ}$ 2 T cells at 1:1, 5:1 and 10:1 effector:target (E:T) ratio, with V $^{\circ}$ 9V $^{\circ}$ 2 T cells as the effector, and cancer cells as the target. After incubation for 9 h at 37 $^{\circ}$ C, 50 μ L of supernatant was assayed for LDH activity following the manufactures protocol. The appropriate controls were prepared and cytotoxicity was calculated as:

$$\% \ \textit{Cytotoxicity} = \frac{\textit{experimental release} - \textit{effector spontaneous release} - \textit{target spontaneous release}}{\textit{targetmaximum release} - \textit{targetspontaneous release}} \times 100$$

target cancers in the bone has not been fully investigated. In this study, we used a murine model of osteolytic breast cancer, where breast cancer cells were implanted directly into the tibia in NOD/SCID mice. We showed for the first time, that $V\gamma9V\delta2$ T cells localised to osteolytic breast cancer lesions growing in the bone and that multiple infusions of $V\gamma9V\delta2$ T cells slowed tumour growth. We also showed that ZOL potentiated the anti-cancer efficacy of $V\gamma9V\delta2$ T cells, decreased tumour burden in the bone, inhibited tumour-associated osteolysis, and decreased lung metastases tumour burden.

Materials and methods

Cells and reagents

ZR75 and T47D human breast cancer cell lines were obtained from American Type Culture Collection. The MDA-MB231 human breast cancer derivative cell line MDA-MB231-TXSA was kindly provided by Dr. Toshiyuki Yoneda (University of Texas

Cell viability assay

MDA-MB231-TXSA cells expressed luciferase, which was the basis for a luciferase activity viability assay using Dual Luciferase® Reporter Assay kit (Promega, Madison, WI, USA). Briefly, 1×10^4 luciferase-tagged target cells were seeded in triplicate in a 96-well microtiter plate and allowed to adhere overnight. Cells were then treated with or without 25 μ M ZOL for 24 h, and then co-cultured with $V\gamma9V\delta2$ T cells at 1:1, 5:1 and 10:1 E:T ratios. After 24 h incubation, media was removed and cells were washed in PBS, then lysates were prepared and analysed following the manufacturers protocol. Viability was calculated as:

$$% Viability = \frac{experimental value}{untreated control value} \times 100$$

Measurement of DEVD-caspase activity

DEVD-caspase activity was assayed by cleavage of zDEVD-AFC (z-asp-glu-val-asp-7-amino-4-trifluoro-methyl-coumarin), a fluorogenic substrate based on the peptide sequence at the caspase-3 cleavage site of poly (ADP-ribose) polymerases

Download English Version:

https://daneshyari.com/en/article/5525555

Download Persian Version:

https://daneshyari.com/article/5525555

<u>Daneshyari.com</u>