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We present a hybrid heuristic algorithm, clusterAOI, that generates a more interesting generalised table than
obtained via attribute-oriented induction (AOI). AOI tends to overgeneralise as it uses a fixed global static thresh-
old to cluster and generalise attributes irrespective of their features, and does not evaluate intermediate interest-
ingness. In contrast, clusterAOI uses attribute features to dynamically recalculate new attribute thresholds and
applies heuristics to evaluate cluster quality and intermediate interestingness. Experimental results show
improved interestingness, better output pattern distribution and expressiveness, and improved runtime.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Pattern interestingness is determined by an objective measure [18]
or by subjective user interpretation [15]. Threshold-driven algo-
rithms [18,12] generate many rules which need to be filtered to de-
termine interestingness [15]. Attribute-oriented induction (AOI)
[9] extracts high-level generalised rules by repeatedly replacing
and clustering [14,16] attribute values using domain knowledge1

[9,17]. AOI uses attribute and relation generalisation thresholds to
limit the number of distinct attributes and rules generated.

1.1. Problem and approach

We aim to obtain generalised and hencemore interesting rules than
AOI. AOI overgeneralises to “ANY” values [3,13,14] as it uses a fixed
global static threshold to generalise attributes irrespective of their fea-
tures and does not dynamically evaluate interestingness. The aim here
is to use attribute features to dynamically recalculate new thresholds,
and to apply heuristics to evaluate cluster quality and interestingness.
The most interesting rules consist of mostly interior concepts [6,7,14].

This paper presents clusterAOI, a hybrid heuristic algorithmbased on
[16], which produces a more interesting generalised table than AOI. A
three-fold strategy is used: (1) generalise conservatively [14] selected

clusters of attribute values that share common properties and satisfy a
newly computed local attribute threshold; (2) evaluate intermediate
interestingness result for each attribute and of the algorithm, using
heuristic functions [16]; (3) apply Kullback–Leibler (KL) divergence
and cluster quality (CQ) interestingness [16] to the output [10]. Experi-
ments show improved interestingness (up to 4 times), better output
pattern distribution and expressiveness (about 1.5 times), and im-
proved runtime (about 2 times).

The process is as follows: (1) pre-clusterAOI analyses attribute
features to dynamically generate local thresholds; (2) intermediate-
clusterAOI uses probabilistic semantic similarity between clusters of
attribute values and evaluates cluster interestingness, resulting in im-
proved interestingness and runtime; (3) in post-clusterAOI the final out-
put table's interestingness is determined using CQ (a global harmonic
mean) and KL.

As an example we apply AOI and clusterAOI to the cancer Wisconsin
dataset [19] (Table 1). We calculate KL for divergence and cluster qual-
ity (CQ). clusterAOI gave 0% overgeneralisation while AOI gave 50%; KL
was 1.7 times higher and CQ 3 times higher. clusterAOI also produced
twice as many informative rules (NOT-ANY), i.e. 100% compared to
50% for AOI. Similar weaknesses were highlighted in [21]. Overall,
clusterAOI improves pattern understandability, intelligent interpreta-
tion and interestingness.

The rest of the paper is structured as follows: Section 2 discusses re-
lated work; Section 3 presents prerequisites and definitions; Section 4
introduces pre-clusterAOI; Section 5 presents intermediate-clusterAOI
and post-clusterAOI; Section 6 describes experimentation; and Section 7
concludes. A running Case Study (Table 2) is extended as each aspect of
the approach is introduced.
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2. Related work

Generally, AOI algorithms [3,4,8,9,13,14] are threshold-driven
i.e. they stop generalisation when thresholds are reached (the only in-
terestingnessmeasure used), and do not consider attribute features and
proprieties [3]. Further, most AOI algorithms evaluate interestingness
before (pre-AOI) and after (post-AOI) generalisation, less so during
(intermediate-AOI) generalisation. Differences still exist in these
algorithms. For pre-AOI, [21] removes discriminating data that may
affect interestingness. Others [1,7] analyse depths and weighted
heights of concept hierarchies to determine interestingness, but only
use a single fixed weight value for interior concepts which, naturally,
may vary between hierarchies. For intermediate-AOI, [3] uses
multiple-level support thresholds per attribute and order generalised
tuples according to association strength. Others [1,11] select the next
attribute generalisation path to follow but are computationally-
intensive. In [13], repeating attribute values are preserved to minimize
overgeneralisation and produce many output rules. In post-AOI [6,16],
the number of interior concepts in the output is applied as an interest-
ingness measure using only the original global thresholds. Further the
algorithm in [21] is unsuitable for large datasets (its order complexity
being O(n3)).

Existing work has been applied in isolation and largely over-
generalises the rules. Still, there remain issues such as manual selection
of thresholds that may be unsuitable to apply globally to all attributes
(one size fits all problem). Secondly, no AOI algorithm evaluates inter-
estingness in all three phases: pre-, intermediate- and post-. Our earlier
work suggests that there can be improvements in interestingness of
generalised patterns [16].

We propose a coordinated hybrid algorithm, clusterAOI, to ad-
dress these limitations: clusterAOI has three phases: pre- (Section 4)—
addresses attribute feature measure (or entropy); intermediate-
(Section 5)—evaluates interestingness during generalisation (locally
and globally) using attribute clustering functions [16,17]; and post-
(Section 5)—evaluates interestingness of rules (from clusters) using
cluster similarity, tightness and local interestingness functions; and
overall via the KL function [10], often used in information theory,
which gives differences in information divergence between data
distributions in the rules.

3. Prerequisites and definitions

clusterAOI addresses interestingness as follows: let relation R be de-
fined on dataset D p Rwith n tuples; attribute Ai and attribute hierarchy
Hi pairs exist form attributes i.e. {(A1,H1),(A2,H2),…,(Am,Hm)}, Am + 1 is an
attribute storing the count of tuples in R and t is a global threshold. Then
∑ |Am + 1, ∅ | = n, with domain values Dom(Am + 1, ∅) ∈ Z+, where
Z+ are positive integers, with Hm + 1 = ∅. Given a generalisation space
Bi = Ai ∪ Hi for each attribute, we use entropy function ∇(Ai) to
generate new local thresholds {L.thri : L.Thri ≥ G.Thr, i = 1,…,m}, for
each Ai, where G.Thr is the global threshold. L.Thri ≥ G.Thr means at
most |L.Thri| distinct values per attribute, thus minimising
over generalisation. With a description language L = (Bi,f),
there is a level-by-level “nearest parent” generalisation function
f : Bi → Dom(Hi) and a partial order (≺,Bi) for finding parents (or
descriptions) {φ1,φ2,…,φk} in Bi i.e. a cluster {φ1,…,φj} has parent
φ′ = min {f(φ1),…,f(φj)} [17]. This leads to Definitions 1 and 2.

Definition 1. Cluster. Given attribute Ai = {ai1,..,aik}, an attribute cluster
of Ai is defined as Cj = {c1,…,cn}, Cj ⊆ Ai, n ≤ k.

Definition 2. Generalisable cluster. Given a cluster Cj = {c1,…,cn} of Ai
and local threshold α = L.Thri, cluster Cj is generalisable if |Cj| ≥ α and
f(ck) = f(cl), ∀ k, l ≤ n, k ≠ l.

Generalisation of each attribute stopswhen its optimal value (a local
interestingness value) is reached (Definition 3, Section 5.1), and in the
global case, when a global optimal value is encountered (Theorem 1,
Section 5.1). We derive these values by applying heuristic functions
to attribute clusters. Without loss of generality, interestingness
[16] can be described by both distance and cluster tightness [17]
depending on tuple distribution in a summary table [10] (a cluster
of attribute values). The agglomerative hierarchical clustering dis-
tance δn and tightness τn functions [17] are used for overall interest-
ingness: Gn : δn; τnð Þ→Rþ . These functions exhibit both monotone
and anti-monotone properties during generalisation. Therefore, the
problem of mining generalised patterns is a 4-tuple (∇,ILi ,f,IgT) (see
Appendix E) defined as follows:

(1) Find attribute significance (entropy) ∇(Ai) and generate new
local threshold L.Thri; discussed in Sections 4.1 and 4.2;

(2) Find local attribute interestingness in iteration k and aggregate
values using a cluster tightness function IL

i(Ai) discussed in
Section 5.1;

(3) Generalise values using distance function f(Bi) subject to L.Thri;
(4) Find global cluster interestingness IgT(…) of table T by aggregating

local values from (2) using Eq. (7) discussed in Sections 5.2–5.4.

After rule generation, we then measure divergence (using KL)
and cluster quality (CQ) in the rules. KL is an information divergence
measure between two probability distributions (uniform and actu-
al): higher values show good distribution and variety of output
values, indicating improved interestingness [10]. Given m tuples in
a table T = {t1,…,tm} and actual probabilities {p1,…,pm}, the divergence

is KL Tð Þ ¼ log2m−∑
m

i¼1
pi log2pi, whereKL(T) ≥ 0, bounded by log2m. CQ

is an interestingness heuristic function [16] applied to the top k rules of
the output (Eq. (7), Section 5.2), similar to heuristics in [1,7].2

4. Pre-clusterAOI

Pre-clusterAOI aims to find each attribute's local threshold L.Thr
(from G.Thr) using attribute features such as concept hierarchy and
distinct values.

Table 1
Comparing final output on NOT-ANY values, breast cancer dataset [19].

Algorithm cellSize bNuclei nNuclei Mitoses Count %ANY %NOT-
ANY

AOI AboutAve AboutAve Any Any 485 50 50
AboutAve AboveAve Any Any 93

G.Thr = 2, KL = 0.63, CQ = 11.59

clusterAOI AboutAve AboutAve AboutAve AboutAve 483 0 100
AboutAve AboveAve AboutAve AboutAve 99
AboveAve AboveAve AboveAve AboutAve 71

G.Thr = 2, KL = 1.08, CQ = 34.6

Table 2
Ball data.

Diameter Colour

2 Red
7 Blue
34 Yellow
25 Green
28 Orange
8 Violet
16 Red 2 Notation is collected in Appendix E.
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