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Weighted games for several levels of approval in input and output were introduced in [9]. An extension of the
desirability relation for simple games, called the influence relation, was introduced for games with several levels
of approval in input in [24] (see also [18]). However, there are weighted games not being complete for the influ-
ence relation, something different towhat occurs for simple games. In this paperwe introduce several extensions
of the desirability relation for simple games and from the completeness of them it follows the consistent linkwith
weighted games, which solves the existing gap.Moreover, we prove that the influence relation is consistent with
a known subclass of weighted games: strongly weighted games.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Voting systems in democratic institutions, as those in international
economic organizations or federal voting bodies, have in common that
voters must make decisions involving a choice between multiple alter-
natives instead of themost usual assumptionwhich assumes that voters
are only allowed to vote for “yes” or “no”. The specific or definable deci-
sion context consists of “either breaking the status quo or not”. The tar-
get systemdescribes each situation inwhich partitions of voters are able
to pass a new law or change the status quo. Making decisions in demo-
cratic organizations is regarded as a DSS and an investigation of the DSS
literature reveals that research has mainly focused on the effects of de-
sign, implementation and use on decision outcomes (see e.g., [3,11]).

The generalization of simple voting games to multiple levels arose
out of the observation that, whilemany real voting systems allow voters
to abstain (or be absent), simple games, by their nature, cannot take this
possibility into account; those who do not vote “yes” are presumed to

vote “no”. Some works that took more than two input alternatives
into consideration are: [5,19,1,12,14,16,17].

The voting structures, we primarily consider in this paper, are partic-
ular cases of (j, k) voting systems introduced in [9]. These structures as-
sume that levels of approval in both, input and output, are ordered. The
paper is confined to the case k = 2and is focused for j = 3ordered levels
of input approval, although the results obtained in this paper extend for
any arbitrary greater value of j.Whenabsent voters are taken into account
with a quorum (like in [4] or in [25]) the levels of input approval are not
ordered and therefore, the results in this paper do not extend to that con-
text. Some (3, 2) voting systems areweighted (3, 2) systemswhich admit
a representation by means of vector weights and a threshold for the sys-
tem, and therefore their representations as weighted systems are useful
to separate the two possible collective outcomes. A purpose of this
paper is to link the completeness of some desirability relations that deter-
mine the importance of voters in the system,withweighted systemswith
several ordered levels of approval for the input.

A necessary but not sufficient condition for a simple game to be rep-
resentable as a weighted game is to be complete, i.e., all players are
pairwise comparable by the desirability relation, which is a pre-order-
ing on the set of voters and therefore a reflexive and transitive relation.
Consequently, an easy and practical way to identify some non-weighted
simple games is to check that they are not complete.
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The notion of weighted game for (j,k) simple games is supported by
a powerful combinatorial argument, grade–trade robustness for parti-
tions. Even the issue of ascertaining whether an anonymous (j,2)
game is weighted is a difficult issue [10,26]. When we are restricted to
simple games, i.e. j = k = 2,weighted (j,k) games are simply weighted
simple games and grade–trade robustness for partitions (see [9]) is
trade-robustness for coalitions (see [21] and [23]).

In this paper, we will look at the extension of the desirability relation
for simple games [13] to the ternary voting game (or more generally for
(3, 2) games) given in [24], wherein such an extensionwas denominated
influence relation. In [24], it is proved that the influence relation fails to
be transitive and cycles for players are possible. We observe that one
may easily findweighted (3, 2) gameswhich are not complete for the in-
fluence relation, so that the completeness of the game for the influence
relation is not a necessary condition for a (3, 2) game to be weighted.
To solve this gap we consider three separate new relations, each of
them weaker than the influence relation. Then the desired notion of
completeness is derived by demanding the completeness of each one
of these three new relations. This notion is weaker than the complete-
ness for the influence relation, but it is enough to become a necessary
condition for the (3, 2) game to be weighted. Moreover, we will prove
that the completeness derived by the influence relation becomes a nec-
essary condition for a (3, 2) game to be strongly weighted, a subclass
of weighted games already considered in [9].

An additional issue is also considered in this paper. It concerns the as-
sociated notions of swap-robustness for each of the three new relations
introduced in the paper. These characterizations extend the known char-
acterization of complete simple games by swap-robustness given in [22]
and [20].

The paper is organized as follows. The technical background as well
as an example is introduced inwhat remains of this section. In Section 2
we introduce several notions of desirability for (3, 2) games and consid-
er their completeness, their restrictions and extensions to simple games
and the hierarchies they induce. In Section 3 we consistently link
weighted (3, 2) games with an appropriate class of complete (3, 2)
games, and strongly weighted (3, 2) games with complete (3, 2)
games with respect to the influence relation. In Section 4 different (3,
2) swap robustness properties, which restriction for the case of simple
games constitutes a characterization of complete games, are established
for the derived notions of completeness for (3,2) games. Conclusion
ends the paper.

1.1. The class of (3, 2) simple games

The material on this section is essentially taken from Freixas and
Zwicker [9], where (j,k) simple games are introduced, for the particular
choices: j = 3 and k = 2. Before the main notions are introduced we
need some preliminary definitions. An ordered tripartition of the finite
set N is a sequence S = (S1,S2,S3) of mutually disjoint sets whose
union is N. Any Si is allowed to be empty, and we think of Si as the set
of those voters of N who vote approval level i for the issue at hand
(where approval level 1 is the highest level of approval, 2 is the interme-
diate level and 3 the lowest level). Themost relevant situation that hap-
pens in voting is when S1 corresponds to the set of “yes” voters, S2 to the
set of abstainers and S3 to the set of “no” voters. Thus, an ordered
tripartition is the analog of a coalition for a standard simple game. Let
3N denote the set of all ordered tripartitions of N. For S, T ∈ 3N, we
write S p3 T to mean that either S = T or S may be transformed into T
by shifting 1 or more voters to higher levels of approval. This is the
same as saying S1 p T1 and S1 ∪ S2 p T1 ∪ T2; we write S ⊂3 T if
S p3 T and S ≠ T. The p3 order defined on 3N has minimum: the
tripartition N such that N 3 ¼ N , and maximum: the tripartition M
such that M1 ¼ N; i.e., for every tripartition S, N p3 S p3 M holds.

Definition 1.1. A (3, 2) simple game G = (N,V) (henceforth (3, 2)
game) consists of a finite set N of voters together with a value function

V : 3N → {0,1}, which satisfies V Nð Þ ¼ 0, V Mð Þ ¼ 1, and is monotonic:
for all ordered tripartitions S and T, if S ⊂3 T then V(S) ≤ V(T).

A (3, 2) game is also defined by the set of winning tripartitionsW =
{S ∈ 3N : V(S) = 1} that satisfies N∉W , M∈W , and the monotonicity
requirement: if S ⊂3 T and S ∈ W then T ∈ W.

Standard notions for coalitions in simple games naturally extend for
tripartitions in (3,2) games: S is a losing tripartitionwhenever V(S) = 0,
let L denote the set of losing tripartitions; S is a minimal winning
tripartition provided that S is winning and for all T ∈ 3N such that
T ⊂3 S, T is losing, let Wm denote the set of minimal winning
tripartitions; S is a maximal losing tripartition provided that S is losing
and for all T ∈ 3N such that S ⊂3 T, T is winning, let LM denote the set
of maximal losing tripartitions. It is clear thatW and L form a bipartition
of 3N, and that each of the sets: W, L, Wm, and LM uniquely determines
the (3, 2) game.

Definition 1.2. Let G = (N, V) be a (3, 2) game. A representation of G as
a weighted (3, 2) game consists of a vector w = (w1,w2,w3) wherewi :

N→R for each i together with a real number quota q such that for every
tripartition S, V(S) = 1 if and only if w(S) ≥ q, where w(S) denotes

X3

i¼1

X

p∈Si

wi pð Þ and w1 pð Þ≥w2 pð Þ≥w3 pð Þ for each p∈N:

We say that G = (N, V) is a weighted (3, 2) game if it has such a
representation.

As was observed in [9], each “yes” voter contributes the weightw1(p)
to the totalweightH; each abstainer contributesw2(p) toH, and each “no”
voter contributesw3(p) to H, with the issue passing exactly if Hmeets or
exceeds some preset quota q. That is, before any voting takes place each
voter is pre-assigned three weights with w1(p) ≥ w2(p) ≥ w3(p) for
each voter p, but will make no assumptions about the signs of w1(p),
w2(p) orw3(p). As occurs for simple gameswhere twoweights represent
superfluous information, three weights represent superfluous informa-
tion. If we renormalize by subtracting w2(p) from each of the weights
w1(p), w2(p) and w3(p) then the new triple of weights w+(p) =
w1(p) − w2(p), 0, andw−(p) = w3(p) − w2(p) describes the same vot-
ing system, and satisfies w+(p) ≥ 0 ≥ w−(p).

A stronger condition of a weighted (3, 2) game introduced in [9] is
the following.

Definition 1.3. A strongly weighted (3, 2) game is a weighted (3, 2)
game that admits a representation such that for every pair of voters p
and r, either

wþ pð Þ≥wþ rð Þ and −w− pð Þ≥−w− rð Þ

or

wþ pð Þ≤wþ rð Þ and −w− pð Þ≤−w− rð Þ:

Example 1.4. Consider the (3, 2) gamewith a set of voters N = {a,b,c}:

Wm ¼ a; b; cð Þ; b; c; að Þ; c; a; bð Þf g:

From the set of minimal winning tripartitions one may easily gener-
ate the set of winning tripartitions, the set of losing tripartitions and the
set of maximal losing tripartitions, which is:

LM ¼ a; c; bð Þ; b; a; cð Þ; c; b; að Þ; ∅; abc;∅ð Þf g:
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