

Contents lists available at ScienceDirect

Experimental Cell Research

CrossMark

journal homepage: www.elsevier.com/locate/yexcr

Improved therapeutic efficacy of mammalian expressed-recombinant interferon gamma against ovarian cancer cells

Ali Razaghi^a, Carina Villacrés^b, Vincent Jung^b, Narges Mashkour^a, Michael Butler^b, Leigh Owens^a, Kirsten Heimann^{a,*}

^a Centre for Biodiscovery and Molecular Development of Therapeutics, James Cook University, Townsville QLD 4811, Australia ^b Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada R3T 2N2

ARTICLE INFO

Keunvords: Interferon gamma Glycosylation Ovarian cancer SKOV3 FADD Therapeutic efficacy

ABSTRACT

Human interferon gamma (hIFNy) affects tumour cells and modulates immune responses, showing promise as an anti-cancer biotherapeutic. This study investigated the effect of glycosylation and expression system of recombinant hIFNy in ovarian carcinoma cell lines, PEO1 and SKOV3. The efficacy of E. coli- and mammalianexpressed hIFNy (hIFNy-CHO and HEK293, glycosylated/de-glycosylated) on cytostasis, cell death (MTT, and Guava-ViaCount^{*} flow-cytometry) and apoptotic signalling (Western blot of Cdk2, histone H3, procaspase-3, FADD, cleaved PARP, and caspase-3) was examined. Hydrophilic Interaction Liquid Chromatography determined the structure of N-linked glycans present in HEK293-expressed hIFNy (hIFNy-HEK). PEO1 was more sensitive to hIFNy than SKOV3, but responses were dose-dependent and expression platform/glycosylation status-independent, whereas SKOV3 responded to mammalian-expressed hIFNy in a dose-independent manner, only. Complex-type oligosaccharides dominated the N-glycosylation pattern of hIFNY-HEK with some terminal sialylation and core fucosylation. Cleaved PARP and cleaved caspase-3 were not detected in either cell line, but FADD was expressed in SKOV3 with levels increased following treatment. In conclusion, hIFNy did not induce apoptosis in either cell line. Mammalian- expressed hIFNy increased cell death in the drug-resistant SKOV3. The presence of FADD in SKOV3, which may inhibit apoptosis through activation of NF-κB, could serve as a novel therapeutic target.

1. Introduction

Human interferon-gamma (hIFNy) is a cytokine with immunomodulatory properties, vital for innate and adaptive immunity against viral/microbial infections and exhibits cytotoxic/cytostatic activity against cancer cells. Native hIFNy is naturally synthesised by CD4⁺ T helper cell type 1 (T_{h1}) lymphocytes, CD8⁺ cytotoxic lymphocytes and natural killer (NK) cells [1,2].

The active form of native hIFNy is a soluble homodimer with two Nglycosylation sites on asparagines (N²⁵ & N⁹⁷) on the surface of each dimer [1-3]. The glycans at N²⁵ are fucosylated and are mainly complex-type sialylated oligosaccharides with the sugar composition of N-acetylneuraminic acid, galactose, mannose, N-acetylglucosamine,

and fucose. In contrast, the glycans at N⁹⁷ are non-fucosylated hybrid high-mannose structures with a sugar composition of N-acetylneuraminic acid, galactose, mannose, and N-acetylglucosamine [2,4].

Commercial hIFNy is bacterially derived from Escherichia coli (human interferon gamma-1b (hIFNy-1b), tradename: ACTIMMUNE[®]), approved for clinical treatment of chronic granulomatous disease and malignant osteopetrosis, with growing prospect for cancer immunotherapy [2]. A short half-life stemming from a lack of glycosylation limits the efficacy of hIFNy-1b [5] and production is costly due to the formation of inclusion bodies and endotoxin contamination [6]. More cost-efficient production is being explored in eukaryotic systems such as yeast (e.g. Pichia pastoris) [7], protozoa (e.g. Leishmania sp.), and mammalian cells (e.g. Chinese hamster

[•] Corresponding author.

http://dx.doi.org/10.1016/j.yexcr.2017.08.014

Received 17 May 2017; Received in revised form 5 August 2017; Accepted 8 August 2017 Available online 10 August 2017

0014-4827/ © 2017 Elsevier Inc. All rights reserved.

Abbreviations: 2-AB, 2-aminobenzoic acid; 3D, three-dimensional structure; AU, arbitrary unit; BSA, bovine serum albumin; CHO, Chinese hamster ovary; hIFNy-CHO, CHOexpressed hIFNy; deglyco-hIFNy-HEK, deglycosylated HEK293-expressed hIFNy; delgyco-hIFNy-CHO, deglycosylated CHO-expressed hIFNy; FBS, foetal bovine serum; hIFNy-HEK, HEK293-expressed hIFNy; hIFNy-R, hIFNy receptor; HEK293, human embryonic kidney 293; hIFNy-1b, human interferon gamma-1b;; hIFNy, human interferon-gamma; HILIC, hydrophilic interaction liquid chromatography; IRF-1, interferon regulatory factor-1; IL1β, interleukin 1 beta; NK, natural killer cells; NF-κB, nuclear factor kappa-lightchain-enhancer of activated B cells; PNGase F, peptide N-glycosidase F; FADD, Fas-Associated death domain; PARP, poly-ADP-ribose polymerase; RIPK3, receptor-interacting kinase 3; STAT1, signal transducer & activator of transcription-1; TNFα, tumour necrosis factor alpha

E-mail address: Kirsten.heimann@jcu.edu.au (K. Heimann).

ovary (CHO), human embryonic kidney 293 (HEK293), mice, rat) [2], with best results to date in mammalian expression systems (higher productivities, similarity to native hIFN γ in glycosylation and protein folding) [2]. Differences exist in the *N*-glycan structure of hIFN γ expressed in CHO; *i.e.* non-human-like sialylation potentially induces immunogenicity and affects stability [2,8].

Glycan residues provide protease resistance, and the type of glycan affects half-life (*i.e.* high mannose-type hIFN γ expressed in insect cells had a shorter half-life) and pharmacokinetics of hIFN γ [3]. Detailed knowledge of the effect of glycosylation on the therapeutic efficacy of hIFN γ is limited, although glycosylation has been proven to be essential for the therapeutic efficacy of protein drugs [9]. This study explored the efficacy of glycosylation status of recombinant hIFN γ from three different expression systems (*E. coli*, CHO and HEK293) against the ovarian cancer cell lines, PEO1 and SKOV3, to evaluate whether or not mammalian expressed recombinant hIFN γ can be a superior substitute for the prokaryotic product.

Ovarian cancer is the 5th deadliest cancer in women and treatment of ovarian cancer with hIFN γ -1b underwent phase I, II & III clinical trials with mixed results. Some of the identified obstacles were tumour insensitivity to hIFN γ and inability to deliver hIFN γ locally [10–12]. In contrast, preclinical *in vitro* & *in vivo* studies on ovarian cancer cell lines all showed a degree of sensitivity to hIFN γ -1b except for SKOV3 (Table 1).

Anti-cancer efficacy of hIFNy in ovarian cancer cells was shown to be due to cytostasis, through activation of p53 and p21 leading to cell cycle arrest (Fig. 1) and/or cytotoxicity, causing cell death. The latter was subdivided into pyroptosis through activation of interferon regulatory factor-1 (IRF-1) and caspase-1, and intrinsic apoptotic signalling via activation of IRF-1, caspase-8, cytochrome-c release from mitochondria, the caspase cascade and inhibition of poly-ADP-ribose polymerase (PARP) (Fig. 1; Table 1). Treatment of OVCAR3 with hIFNy-1b led to both, apoptosis and cytostasis. Prior work on PEO1 also showed the possible engagement of both, cytostasis and apoptosis [13,14], which had been suggested based on signal transducer & activator of transcription-1 (STAT1) activation and p53 expression [15]. Therefore, this research aimed to investigate other signalling molecules (cleaved PARP and caspase-3) to provide more conclusive evidence of hIFNy-induced apoptosis. In contrast, high levels of phosphorylated Fas-Associated Death Domain (FADD), a regulator of cell cycle progression, proliferation, tumorigenesis and necroptosis

Table 1

Summary of preclinical treatments of ovarian cancer cell lines with hIFNy-1b.

[16], increased activation of the anti-apoptotic transcription factor, nuclear factor kappa-light-chain-enhancer of activated B cells (NF- κ B), a biomarker for aggressive phenotypes in lymphomas, lung and color-ectal carcinomas (Fig. 1) [17,18]. hIFN γ , through induction of the Fas pathway and export of FasL [19], can activate FADD (Fig. 1), which may explain h-IFN γ resistance in cancer cell lines like SKOV3. Therefore FADD levels following treatment with hIFN γ were also investigated here in PEO1 and SKOV3.

2. Material & methods

2.1. Ovarian carcinoma cell lines & cultivation

Two ovarian carcinoma cell lines, PEO1 (passage Nº \geq 40) (Catalogue Nº 10032308) and SKOV3 (passage Nº \geq 20) (Catalogue № 91091004), were purchased from the European Collection of Authenticated Cell Cultures, UK. Cell lines were maintained at 37 °C in a humidified growth chamber in 5% CO2 in RPMI-1640 medium supplemented with L-glutamine and sodium bicarbonate (Sigma, R8758, Castle Hill, NSW 1765, Australia) and addition of 10% foetal bovine serum (FBS) (Sigma, F4135; USA origin); penicillins (100 U mL^{-1}) and streptomycin $(100 \mu \text{g mL}^{-1})$. Cells were subcultured when confluent. For the passage, cells were detached through addition of Gibco® Trypsin-EDTA (0.25%) solution (ThermoFisher Scientific, Newstead, QLD 4006, Australia). Subsequently, trypsin was deactivated by addition of FBS-containing complete medium. Subcultures were seeded with 50×10^3 cells per vented T-25 flask (25 cm², Orange Scientific, Sydney, NSW, Australia). Culture medium was changed every three days.

2.2. Recombinant hIFNy

Products from three different protein expression platforms were purchased; hIFN γ -1b from Sigma (SRP3058), CHO-expressed (hIFN γ -CHO) from SinoBiologicals (11725-HNAS, Beijing, China) (Purity: > 92%) and HEK293-expressed (hIFN γ -HEK) from Acrobiosystems (IFG-H4211, Newark, DE 19711, USA). All recombinant hIFN γ products were provided as a lyophilized powder from PBS (pH 7.4) with a purity > 92%, and were tested for endotoxin content (< 0.1 EU μg^{-1}).

Cell Line	Mechanism of Action	Signalling Molecules Detected	Ref.
2774	Apoptosis	Nitric oxide ^a	[40]
	Pyroptosis	Induction of IRF-1 & activation of caspase-1	[41]
HOC7	Apoptosis	Nitric oxide ^a	[40]
OAW42	Apoptosis	PARP inhibition	[14]
OVCAR3	Apoptosis	Nitric oxide ^a	[40]
	Less sensitive	Induction of IRF-1	[41]
	Apoptosis	PARP inhibition	[14]
	Cytostasis/Apoptosis	Cell cycle arrest; G ₁ , G ₂ , and S phases;	[42]
		Induction of p53, Bax, and caspase-3 ^b	
	Cytostasis	Increasing p21 mRNA	[15]
OVCAR4, OVCAR5	Cytostasis/Apoptosis	PARP inhibition	[14]
PA1	Pyroptosis	Induction of IRF-1 & activation of caspase-1	[41]
PEO1	Apoptosis/Cytostasis	Depolarization of mitochondrial membrane, release of cytochrome C & activation of caspase-9	[13]
		Induction of caspase-8 & 9	[14]
	Cytostasis	Increasing STAT1 &	[15]
		p21 mRNA	
PEO14, PEO16	Cytostasis/Apoptosis	PARP inhibition	[15]
SKOV3	Insensitive	Initial expression of p21, IRF-1 mRNA detected. However, later the pattern of expression was reduced to the	[14,15,41]
		level of untreated cells.	
SW626	Cytostasis/Apoptosis	PARP inhibition	[14]

 a Polytherapy of hIFNy, interleukin 1 beta (IL1 β), and tumour necrosis factor alpha (TNF α).

 $^{\rm b}$ Polytherapy of hIFNy plus TNFa.

Download English Version:

https://daneshyari.com/en/article/5527042

Download Persian Version:

https://daneshyari.com/article/5527042

Daneshyari.com