
Leukemia Research 52 (2017) 1–7

Contents lists available at ScienceDirect

Leukemia  Research

journa l h om epage: www.elsev ier .com/ locate / leukres

Computational  drug  treatment  simulations  on  projections  of
dysregulated  protein  networks  derived  from  the  myelodysplastic
mutanome  match  clinical  response  in  patients

Leylah  Drusboskya,  Cindy  Medinaa,  Regina  Martuscelloa,1, Kimberly  E.  Hawkinsa,
Myron  Changb,  Jatinder  K.  Lambac,  Shireen  Valid,  Ansu  Kumard,  Neeraj  Kumar  Singhd,
Taher  Abbasid, Mikkael  A.  Sekerese,  Mar  Mallo f,  Francesc  Sole f, Rafael  Bejarg,
Christopher  R.  Coglea,∗

a Department of Hematology Oncology: 1600 SW Archer Rd. PO box 100278, Gainesville, FL 32610, USA
b Department of Biostatistics: 2004 Mowry Road, PO box 117450, Gainesville, FL 32611, USA
c Department of Pharmacotherapy and Translational Research: 1225 Center Drive, PO box 100486, Gainesville, FL 32610 USA
d Cellworks Group, Inc., 2033 Gateway Place, Suite 500, San Jose, CA, 95110, USA
e Leukemia Program, Cleveland Clinic, Cleveland: 9500 Euclid Ave, Mail Code R35, Cleveland, OH 44195 USA
f MDS  Research Group, Institut de Recerca Contra la Leucemia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona,
08916 Badalona, Barcelona, Spain
g Division of Hematology and Oncology, UC San Diego Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, CA 92093 USA

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 18 July 2016
Received in revised form 2 November 2016
Accepted 4 November 2016
Available online 6 November 2016

Keywords:
Myelodysplastic syndromes
Computational biology
Mutanome
Response prediction
Hma
Lenalidomide

a  b  s  t  r  a  c  t

Although  the  majority  of  MDS  patients  fail  to achieve  clinical  improvement  to approved  therapies,  some
patients  benefit  from  treatment.  Predicting  patient  response  prior  to  therapy  would  improve  treatment
effectiveness,  avoid  treatment-related  adverse  events  and  reduce  healthcare  costs.  Three  separate  cohorts
of MDS  patients  were  used  to simulate  drug  response  to lenalidomide  alone,  hypomethylating  agent
(HMA)  alone,  or HMA plus  lenalidomide.  Utilizing  a computational  biology  program,  genomic  abnor-
malities  in  each  patient  were  used  to create  an intracellular  pathway  map  that  was  then  used  to screen
for drug  response.  In the  lenalidomide  treated  cohort,  computer  modeling  correctly  matched  clinical
responses  in  37/46  patients  (80%).  In the  second  cohort,  15  HMA  patients  were  modeled  and  correctly
matched  to  responses  in  12  (80%).  In the third  cohort,  computer  modeling  correctly  matched  responses
in  10/10  patients  (100%).  This  computational  biology  network  approach  identified  GGH  overexpression
as  a potential  resistance  factor to HMA  treatment  and  paradoxical  activation  of  beta-catenin  (through
Csnk1a1  inhibition)  as a resistance  factor  to  lenalidomide  treatment.  We  demonstrate  that  a  computa-
tional  technology  is  able  to  map  the complexity  of  the  MDS  mutanome  to simulate  and  predict  drug
response.  This  tool  can  improve  understanding  of MDS  biology  and  mechanisms  of  drug  sensitivity  and
resistance.

© 2016  The  Authors.  Published  by  Elsevier  Ltd. This  is an  open  access  article  under  the CC  BY-NC-ND
license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Abbreviations: MDS, myelodysplastic syndromes; AML, acute myeloid leukemia;
AZA, azacitidine; DEC, decitabine; LEN, lenalidomide; HI, hematological improve-
ment; SKY, spectral karyotyping; CNV, copy number variation; IWG, International
Working Group; HMA, hypomethylating agent; PPV, positive predictive value; NPV,
negative predictive value; CR, complete response; PR, partial response.

∗ Corresponding author at: 1600 SW Archer Road, Gainesville, FL 32610-0278,
USA.

E-mail address: christopher.cogle@medicine.ufl.edu (C.R. Cogle).
1 Columbia University, 1130 St. Nicholas Ave, 10–01B NY, NY 10032.

1. Introduction

The myelodysplastic syndromes (MDS) comprise a group
of hematological malignancies characterized by ineffective
hematopoiesis causing severe cytopenias, multiple genomic and
epigenomic abnormalities, and progression to acute myeloid
leukemia (AML). Molecular heterogeneity exists among MDS
patients and is believed to cause variability in the syndromic
phenotype and treatment response [1]. Only three drugs are
approved by the U.S. Food and Drug Administration for MDS
patients: azacitidine (AZA), decitabine (DEC), and lenalidomide
(LEN). Despite these treatment options, failure to achieve hemato-
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logical improvement (HI) is found in 60% of MDS  patients treated
with azacitidine or decitabine and 33% of deletion 5q (del(5q))
MDS  patients [2,3]. No other standard therapies currently exist
following failure of first line treatment, and as a result, nearly
all MDS  patients die of refractory disease [4,5]. Thus, there is a
large unmet clinical need for (1) accurately predicting response
to first line treatment and (2) identifying alternative therapies for
non-responders.

Several investigators have identified single gene mutations
associated with treatment response. For example, MDS  patients
with mutations in TET2 or DNMT3A mutation were more likely to
achieve clinical improvement after HMA  treatment [6–8]. In del(5q)
MDS  patients, the presence of a TP53 mutation was associated with
relative resistance to lenalidomide treatment [9]. Whereas, these
studies represent important incremental advances, the observa-
tions rely upon one-gene/one-drug analysis and censor tens to
hundreds of other genomic abnormalities that co-exist within the
MDS  mutanome.

Therefore, we  hypothesized that use of a computational biology
technique that incorporates the totality of known genomic abnor-
malities and their predicted protein network disruptions would
provide strong correlations with clinical outcome in MDS.

2. Materials and methods

2.1. Patients

The three MDS  patient cohorts examined in this retrospective
study were prospectively recruited to interventional treatment tri-
als or institutional patient registries, where all patients consented
to have tissue samples banked [6,9,10]. Their de-identified data
were accessed via publication downloads or shared by investi-
gators. This retrospective study was approved by University of
Florida’s Institutional Review Board protocol IRB201602096.

2.2. Computational biology modeling

The computational biology computer modeling system uti-
lized in this study was previously outlined and published
in studies of glioblastoma multiforme and multiple myeloma
[11–13]. Based on over 10 000 published PubMed references,
this model considers signaling pathway interactions important
in cancer including growth factor signaling cascades, cytokines,
chemokines, mTOR regulators, cell cycle regulators, oxidative
and ER stress responses, cancer metabolism, autophagy and pro-
teosomal degradation, DNA damage repair, apoptosis cascades
and p53 signaling to predict a patient’s response to a single
drug or a combination of drugs. This modeling system includes
more than 4 700 intracellular pathway elements that are capable
of simulating 60 000 functional interactions, including compre-
hensive coverage of the kinome, transcriptome, proteome, and
metabolome.

In this study, each MDS  patient’s available genomic informa-
tion (i.e., cytogenetic abnormalities and DNA sequencing data)
was entered into the computational biology system, which uti-
lized PubMed, STRING, HumanNet, and PathwayCommons online
resources to determine whether the patient’s gene mutation gen-
erated an activated or inactivated protein.

To interpret the genomic signature of the patient, we
used cytogenetic profiling by spectral karyotyping (SKY) to
report chromosomal aberrations, including gain/loss of complete
chromosomes or specific chromosomal regions resulting in mono-
somy/trisomy of the genes in the affected regions. In addition to
deletions and duplications, other abnormalities such as deriva-
tive chromosomes, isochromosomes, and translocations may  be

incorporated into the system. Additionally, targeted gene panel
sequencing or whole exome sequencing data can report copy num-
ber variations (CNV) and point mutation information that make
up the genomic signature of each patient’s disease. The genomic
aberration information derived from cytogenetics and sequencing
data is used to create a list of genes with mutations and CNV in
the patient’s genome. The genes found on the loci of the affected
regions of the chromosomes are extracted from the human refer-
ence genome at ENSEMBL, and the complete list of genes is matched
with the Cancer Technology Network to determine the subset of
genes to be represented in the model.

Key assumptions are made when indicating the aberrations
in each patient’s disease network: gain of function or amplifi-
cation of tumor promoter genes, and loss of tumor suppressor
genes drives cancer [14]. Gene variants with therapeutic impli-
cations are searched using public domain to determine each
mutation’s functionality, represented as either a loss or gain of
function. However, genes with mutations of unknown significance
are parsed through a suite of variant calling algorithms to deter-
mine if the mutation is deleterious. For a deleterious mutation
of unknown significance, a tumor promoter gene is assumed to
have gain of function while a tumor suppressor gene is assumed
to have loss of function at the protein activity level. Frameshift
and missense mutations are assumed to cause a loss of gene func-
tion.

For CNV interpretation, amplifications are represented as an
increase of gene expression while deletions are represented as
knockdown of gene expression. Additionally, amplifications of
tumor suppressor genes have lower contribution to the disease
when compared to amplification of tumor promoter genes. A dele-
tion of tumor suppressor genes has a higher dominance in the
disease network when compared to deletion of tumor promoter
genes.

Protein network maps were created for each patient based
on their MDS  mutanome data. In most cases, when multiple
genomic abnormalities co-exist, a complex map of intersecting
protein networks was created that represented the MDS  patient’s
disease physiology. Using the patients’ maps, cell proliferation
was simulated for each patient’s disease (Fig. 1). The prolif-
eration index is an average function of the active CDK-cyclin
complexes that define cell cycle checkpoints, and is determined by
calculating permutations in the biomarkers CDK4-CCND1, CDK2-
CCNE, CDK2-CCNA, and CDK1-CCNB1. The drug(s) of interest (e.g.,
AZA, DEC, LEN, AZA + LEN) were then introduced at various con-
centrations (i.e., C, 0.5C, and 4C) using relevant in vitro data
reported in PubMed. If the drug’s target and downstream mediators
were present, then decreases in cell proliferation were observed
(Fig. 1).

A viability index based on survival and apoptosis is also gen-
erated for each patient. The biomarkers constituting the survival
index include AKT1, BCL2, MCL1, BIRC5, BIRC2, and XIAP, while
the apoptosis index includes BAX, CASP3, NOXA, and CASP8. The
overall viability index of a cell is calculated as a ratio of survival
index/apoptosis index, and the weightage of each biomarker is
adjusted to achieve a maximum correlation with the experimen-
tal trends for the endpoint. The virtual patient disease network is
created by overlaying the patient’s genomic signature onto the con-
trol network, as per the rules and assumptions stated earlier, and
running it thought the simulation technology to achieve a dynamic
disease state.

If MDS  cell growth characteristics (proliferation, viability, apo-
ptosis) normalized in a dose dependent manner, then the patient’s
disease was  scored as responsive (Fig. 1). If the drug in the MDS
model did not decrease cell proliferation or viability, then the dis-
ease was scored as non-responsive.



Download English Version:

https://daneshyari.com/en/article/5527927

Download Persian Version:

https://daneshyari.com/article/5527927

Daneshyari.com

https://daneshyari.com/en/article/5527927
https://daneshyari.com/article/5527927
https://daneshyari.com

