

Contents lists available at ScienceDirect

Mutation Research/Reviews in Mutation Research

journal homepage: www.elsevier.com/locate/reviewsmr Community address: www.elsevier.com/locate/mutres

Review

Interstitial telomeric sequences in vertebrate chromosomes: Origin, function, instability and evolution

Alejandro D. Bolzán

Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE, CICPBA-UNLP-CONICET La Plata), C.C. 403, 1900 La Plata, Argentina

Facultad de Ciencias Naturales y Museo, UNLP, Calle 60 y 122, 1900 La Plata, Argentina

ARTICLE INFO

Article history: Received 23 November 2016 Received in revised form 13 March 2017 Accepted 17 April 2017 Available online 22 April 2017

Keywords:
Telomere
Interstitial telomeric repeats
Chromosomal aberrations
Genome instability
Chromosome instability
Karyotypic evolution

ABSTRACT

By definition, telomeric sequences are located at the very ends or terminal regions of chromosomes. However, several vertebrate species show blocks of (TTAGGG)n repeats present in non-terminal regions of chromosomes, the so-called interstitial telomeric sequences (ITSs), interstitial telomeric repeats or interstitial telomeric bands, which include those intrachromosomal telomeric-like repeats located near (pericentromeric ITSs) or within the centromere (centromeric ITSs) and those telomeric repeats located between the centromere and the telomere (i.e., truly interstitial telomeric sequences) of eukaryotic chromosomes. According with their sequence organization, localization and flanking sequences, ITSs can be classified into four types: 1) short ITSs, 2) subtelomeric ITSs, 3) fusion ITSs, and 4) heterochromatic ITSs. The first three types have been described mainly in the human genome, whereas heterochromatic ITSs have been found in several vertebrate species but not in humans.

Several lines of evidence suggest that ITSs play a significant role in genome instability and evolution. This review aims to summarize our current knowledge about the origin, function, instability and evolution of these telomeric-like repeats in vertebrate chromosomes.

© 2017 Elsevier B.V. All rights reserved.

Contents

I.	Introc	nuction. What are interstitial telomeric sequences?	. 52
	1.1.	Telomeres	. 52
	1.2.	Interstitial telomeric sequences	. 52
	1.3.	Relationship between ITSs and true telomeres	. 52
	1.4.	ITSs detection	
	1.5.	ITSs could represent a significant part of telomeric DNA in vertebrates	. 53
2.	Types	structure and organizatian of ITSs	
	2.1.	Classes of ITSs found mainly in the human genome	. 53
		2.1.1. Short ITSs	. 53
		2.1.2. Subtelomeric ITSs	. 53
		2.1.3. Fusion ITSs	. 53
	2.2.	Heterocromatic ITSs	. 54
	2.3.	ITSs identifiable by cytogenetic methods in vertebrate chromosomes	. 54
3.	Evolu	tionary origin of ITSs	. 54
	3.1.	Evolutionary origin of heterochromatic ITSs	. 54
	3.2.	Sometimes heterochromatic ITSs are just a component of centromeric satellite DNA	. 55
	3.3.	Evolutionary origin of short and subtelomeric ITSs	. 55
4.	ITSs a	ınd karyotypic evolution in vertebrates	. 56
	4.1.	ITSs in vertebrate chromosomes: the study by Meyne etal.	. 56

E-mail addresses: abolzan@imbice.gov.ar, adbolzan64@gmail.com (A.D. Bolzán)

	4.2.	Are ITSs and the evolutionary status of species related?	57
	4.3.	ITSs and the role of Rb fusions in the karyotypic evolution of vertebrates	57
5.	ITSs a	nd genome instability	57
	5.1.	The instability of ITSs in vertebrate cells	57
	5.2.	Some ITSs are not hotspots for rearrangement or recombination	58
	5.3.	Factors affecting ITSs stability	58
		5.3.1. Nature of the sequence	59
		5.3.2. Length of the ITSs	59
		5.3.3. Chromatin status	59
		5.3.4. Epigenetic status of the telomeric sequence	59
		5.3.5. Telomere-associated proteins (i.e., those belonging to the shelterin complex)	59
		5.3.6. Clastogen	59
6.	Induce	ed ITSs instability: the effect of clastogens on ITSs	59
		Chromosomal aberrations directly involving ITSs	
		Effects of clastogens on ITSs	
7.		ısions: importance and biological functions of ITSs	
	Confli	ct of interest statement	62
	Ackno	wledgments	62
	Refere	ences	62

1. Introduction. What are interstitial telomeric sequences?

1.1. Telomeres

Telomeres are specialized nucleoproteic complexes localized at the physical ends of linear eukaryotic chromosomes that maintain their stability and integrity [1]. They provide a protective "cap" for chromosomal DNA against illegitimate recombination, exonucleolytic attack and degradation, and oxidative damage [1,2]. In all vertebrates, the DNA component of telomeres consists of extended arrays of the TTAGGG hexamer [3,4]. Interestingly, this "vertebrate" telomere motif was also found in most Metazoa (except nematodes and arthropods) and in the unicellular metazoan sister group Choanozoa (see [5] for review). Telomeric DNA is bound by a specialized multiprotein complex known as shelterin, constituted by six proteins (POT1, TPP1. TIN2, TRF1, TRF2 and RAP1) and their variants (for example, mice have two forms of POT1, POT1a and POT1b) [1,6]. Besides telomeric repeats and shelterin, telomeres also comprise (UUAGGG)n-containing RNA molecules (telomeric repeat containing RNA or TERRA), a novel class of RNA transcribed from the subtelomere towards the telomere which plays critical roles in telomere biology, such as heterochromatin formation at chromosome ends and regulation of telomerase activity [7–11]. Spontaneous or induced telomere shortening is usually prevented by telomerase, a reverse transcriptase which adds telomeric repeats to the chromosome ends, thus elongating telomeres [1,12-14]. Telomerase activity is usually inactive in somatic cells, so telomere shortens with each cell division, but it is active in germline cells, stem cells, immortalized cell lines, activated lymphocytes, and most of the tumor cells analyzed so far [14]. Alternatively, telomere elongation can occur in the absence of telomerase through the so-called ALT (for 'Alternative Lengthening of Telomeres') mechanism, which involves homologous recombination between telomeres and has been described in several tumor cells and immortalized cell lines [14-17]. Interestingly, telomerase and ALT mechanisms of telomere elongation coexist in some human tumor cells [14].

1.2. Interstitial telomeric sequences

By definition, telomeric sequences are located at the very ends or terminal regions of chromosomes. However, several vertebrate species show blocks of (TTAGGG)n repeats present in non-terminal regions of chromosomes, the so-called interstitial telomeric sequences (ITSs), interstitial telomeric repeats or interstitial

telomeric bands, which include those intrachromosomal telomeric-like repeats located near (pericentromeric ITSs) or within the centromere (centromeric ITSs) and those telomeric repeats located between the centromere and the telomere (i.e., truly interstitial telomeric sequences) of eukaryotic chromosomes [18–20] (Fig. 1). The presence of ITSs has been assumed to be the result of tandem chromosome fusions (telomere–telomere fusions) during evolution or the insertion of telomeric DNA within unstable sites during the repair of DNA double–strand breaks (DSBs) [4,18,19,21]. We will consider the origin and evolution of ITSs in detail in sections 3 and 4 of this review.

1.3. Relationship between ITSs and true telomeres

It has been shown that ITSs do not represent a functional telomere [4]. The only exception reported so far is represented by an Indian Muntjac cell line, where in a small percentage of cells ITSs get amplified and chromosomes fall apart into many small fragments with functional telomeres on most chromosome ends [22]. Moreover, unlike terminal telomeric sequences (i.e., true telomeres), ITSs seem not to be directly associated with the nuclear matrix [23]. Nevertheless, ITSs can interact with telomeres, as demonstrated by the recent discovery of structures named "interstitial telomere loops" or ITLs. These ITLs are chromosome-end structures which result from the interaction of telomeres and ITSs, and are dependent on the telomere-repeat binding factor 2 (TRF2, from the shelterin complex) and lamin A/C (a canonical component of the nucleoskeleton) [24,25]. This structure has important implications in organismal aging, telomere and genome stability, regulation of gene expression and chromosome condensation [25].

1.4. ITSs detection

ITSs are usually detected at the chromosome level by using Fluorescence *in situ* hibridization (FISH) with a DNA or PNA (Peptide Nucleic Acid) telomeric probe or the primed *in situ* labeling (PRINS) technique, but for most short ITSs (<100 bp) molecular methods such as Southern blot or pulsed field gel electrophoresis (PFGE) are necessary to detect these sequences and to determine the exact co-localization of ITSs and the associated breakage or recombination sites. Only a few short ITSs can be detected by FISH or PRINS, due to the relatively low sensitivity of these techniques (about 1 kb, being PRINS more sensitive than FISH) [26,27]. It is important to note that when we refer to ITSs, we

Download English Version:

https://daneshyari.com/en/article/5528888

Download Persian Version:

https://daneshyari.com/article/5528888

<u>Daneshyari.com</u>