
On the computability of agent-based workflows

Wai Yin Mok a,*, Prashant Palvia b, David Paper c

a Accounting and Information Systems, University of Alabama in Huntsville, Huntsville, Alabama, United States
b Information Systems and Operations Management, University of North Carolina at Greensboro, Greensboro, North Carolina, United States

c Business Information Systems, Utah State University, Logan, Utah, United States

Received 3 January 2005; received in revised form 19 October 2005; accepted 20 October 2005

Available online 9 December 2005

Abstract

Workflow research is commonly concerned with optimization, modeling, and dependency. In this research, we however address

a more fundamental issue. By modeling humans and machines as agents and making use of a theoretical computer and statecharts,

we prove that many workflow problems do not have computer-based solutions. We also demonstrate a sufficient condition under

which computers are able to solve these problems. We end by discussing the relationships between our research and Petri Nets, the

multi-agent framework in the literature, linear programming and workflow verification.

D 2005 Elsevier B.V. All rights reserved.

Keywords: Undecidability; Agents; Statecharts; Turing machines; Abacus programs; Workflows; Capabilities

1. Introduction

This paper investigates if computer-based decision

support systems are able to solve the following research

question of interest: Is a particular group of agents

(humans and machines) able to achieve a business goal

that is defined in terms of producing a certain number of

units of a quantifiable output resource? This research

question brings up a very fundamental issue. By model-

ing humans and machines as agents [13], we shall prove

that computers cannot solve our research question, or our

research question is undecidable [16], unless we restrain

it in some ways. The argument of this paper is based on

several assumptions. First, we define an agent frame-

work such that no two distinct agents can execute simul-

taneously (see Section 3.1) and an agent can at most call

on two other agents to perform work (see Section 3.2).

Nevertheless, this framework has no loss of generality

since it is general enough to model abacus programs,

which have the same computational power as Turing

machines (see Theorem 2 in Section 3.2). Second, only

quantifiable resources are considered (see Assumption

1 in Section 3.2). Third, all human jobs must be simple

and mundane such that they all can be completely

characterized as algorithms (see Assumption 2 in Sec-

tion 3.2). Fourth, time taken by a group of agents is not

considered at all. Such a group may take as much time

as it wants to complete its workflow (see Section 3.1).

These assumptions obviously restrict this research to a

narrow class of agent-based workflows. However, we

shall prove in Section 3 that computers cannot even

solve our research question for this narrow class of

agent-based workflows. Then any broader agent frame-

work which subsumes our framework as a special case

will certainly have the same computational problems

presented in Section 3 as well (see Section 4.2).

0167-9236/$ - see front matter D 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.dss.2005.10.010

* Corresponding author.

E-mail addresses: mokw@email.uah.edu (W.Y. Mok),

pcpalvia@uncg.edu (P. Palvia), david.paper@usu.edu (D. Paper).

Decision Support Systems 42 (2006) 1239–1253

www.elsevier.com/locate/dss

mailto:mokw@email.uah.edu
mailto:pcpalvia@uncg.edu
mailto:david.paper@usu.edu
http://dx.doi.org/10.1016/j.dss.2005.10.010


The implications of this paper on workflow designs

are as follows. Since business process reengineering

has claimed many successes in recent years [5,6], a

company might redesign its workflows for more effi-

ciency. Since our research question is fundamental for

the correctness of a workflow, any workflow designer

must answer it. Nevertheless, by Theorems 3 and 4,

there is no computer-based decision support system that

is able to solve our research question. On the other

hand, by Theorem 5 and its corollaries, if every re-

source required by a workflow is bounded, then com-

puters become able to solve our research question.

However, Theorem 6 shows that determining the

bound for a resource required by a workflow is unde-

cidable itself. Therefore, sooner or later human deci-

sions must be made in a workflow design.

A word of caution is appropriate concerning this

conclusion. We do not mean that computers are of no

use for designing workflows. However, we do mean

that designing workflows is not an exact science and

many guesses have to be made during the design pro-

cess. As our techniques become more accurate, most

likely assisted by computers, we may be able to devise

better and better workflow designs. However, our re-

search question can never be solved completely no

matter how sophisticated our techniques become and

human decisions, which in many cases are simply

guesses, must be made.

In order to prove that our research question does not

have a computer-based solution, we must prove that it

does not have an algorithmic solution. For this purpose,

we need a formal definition of algorithms. The belief

that Turing machines are sufficient to define algorithms

is known as the Church–Turing Thesis. Although the

Church–Turing Thesis cannot be proved because there

are unlimited computational models, most mathemati-

cians believe that the Church–Turing Thesis is true

[3,16]. In this research, we make use of an equivalent

computational model, namely abacus programs, to

prove that some agent-based workflow problems are

inherently unsolvable by computers.

Turing machines define algorithms formally. How-

ever, they are too low-level in nature to specify various

features of workflows. As part of the Unified Modeling

Language (UML), Harel’s statecharts are used to model

the reactions of a system when it faces external stimuli

[2]. Moreover, statecharts have been used to model

various workflow concepts specified by the Workflow

Management Coalition [11]. Consequently, we chose

statecharts as a vehicle to prove the assertions we make

in this research. As an example, Fig. 1 shows a state-

chart model of a workflow in a simple garment factory.

The states, which are represented as round-cornered

rectangles in Fig. 1, show the basic activities needed

in the workflow. The transitions, represented as arrows,

are optionally guarded by conditions. Whether transi-

tions will take place depend upon the truth and falsity

of such conditions.

This paper is organized as follows. In Section 2, we

establish the halting problem of statecharts and prove as

corollaries some of its consequences which will be used

later in the paper. Section 3 proves Theorems 3 and 4–

the main results of this paper–which collectively pro-

vide a negative answer to our research question. In

addition, Section 3 also proves Theorem 5 and its

corollaries, which show that if every resource required

by a workflow is bounded, then our research question

becomes decidable. Section 4 discusses the relation-

ships between this work and Petri Nets [12], the

multi-agent framework in [15], linear programming

[9] and workflow verification. The main ideas and

implications are summarized in Section 5.

2. The halting problem of statecharts

An abacus is a theoretical computer in the sense that

it has an unlimited number of registers and each register

can store a number of any size [3]. No real computers

Fabric Cutting

Sewing

Pressing

Checking for Quality

[not satisfactory]

[satisfactory]Sample Making

Fig. 1. A workflow in a simple garment factory.

W.Y. Mok et al. / Decision Support Systems 42 (2006) 1239–12531240



Download English Version:

https://daneshyari.com/en/article/552944

Download Persian Version:

https://daneshyari.com/article/552944

Daneshyari.com

https://daneshyari.com/en/article/552944
https://daneshyari.com/article/552944
https://daneshyari.com

