Acta Biomaterialia 9 (2013) 7573-7579

Contents lists available at SciVerse ScienceDirect

Acta Biomaterialia

journal homepage: www.elsevier.com/locate/actabiomat

Vancomycin-modified LaB₆@SiO₂/Fe₃O₄ composite nanoparticles for near-infrared photothermal ablation of bacteria

Bo-Hung Lai, Dong-Hwang Chen*

Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC

ARTICLE INFO

Article history: Received 13 November 2012 Received in revised form 25 February 2013 Accepted 18 March 2013 Available online 25 March 2013

Keywords: LaB₆ nanoparticles Vancomycin Fe₃O₄ Near infrared photothermal ablation Bacteria

ABSTRACT

LaB₆ nanoparticles possess excellent near-infrared (NIR) photothermal conversion properties. Vancomycin can interact strongly with a broad range of Gram-positive and Gram-negative bacteria. Fe₃O₄ nanoparticles could be used as the carrier for magnetic separation. In this work, vancomycin and Fe₃O₄ nanoparticles were successfully bound onto the surface of LaB₆ nanoparticles with a silica coating and carboxyl functionalization to fabricate vancomycin-modified LaB₆@SiO₂/Fe₃O₄ (Van-LaB₆@SiO₂/Fe₃O₄) composite nanoparticles as a novel nanomaterial for the NIR photothermal ablation of bacteria. From the analyses of absorption spectra, transmission electron microscopy images and X-ray diffraction patterns, the formation of Van-LaB₆@SiO₂/Fe₃O₄ composite nanoparticles was confirmed. The resulting Van-LaB₆@SiO₂/Fe₃O₄ composite nanoparticles possessed nearly superparamagnetic properties, retained the excellent NIR photothermal conversion property of LaB₆ nanoparticles and cauture the bacteria *Staphylococcus aureus* and *Escherichia coli* efficiently. Owing to these capabilities, they were demonstrated to be quite efficient for the magnetic separation and NIR photothermal ablation of *S. aureus* and *E. coli*. Furthermore, the magnetic property made the Van-LaB₆@SiO₂/Fe₃O₄ composite nanoparticles useful for the magnetic assembling of bacteria, which could further enhance the photothermal ablation efficiency. © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

negative bacteria selectively [6-9].

1. Introduction

Infectious bacterial diseases continue to be a leading cause of death and disability. In particular, infections resulting from Gram-positive bacteria (i.e. staphylococci and streptococci) remain a leading cause of morbidity and mortality in humans [1,2]. Vancomycin is a commonly used glycopeptide antibiotic, whose action primarily results in the inhibition of cell wall synthesis. Specifically, vancomycin exerts its antibacterial activity by forming hydrogen bounds with the terminal D-alanyl-D-alanine (D-Ala-D-Ala) moieties of the N-acetylmuramic acid (NAM) and N-acetylglucosamine (NAG) peptide subunits [3,4]. This binding prevents the incorporation of NAM/NAG peptide subunits into the major structural component of Gram-positive cell walls, the peptidoglycan matrix, and thus results in inhibition of cell wall synthesis and ultimately bacterial cell death. Furthermore, according to the studies of Gu et al. [5] and Kell et al. [6], Gram-negative bacteria also could be captured by vancomycin due to either unspecific binding between receptors on the pathogen surface and the glycosides on the vancomycin moiety or breaks/deformities in the outer membrane of Gram-negative bacteria, exposing D-Ala-D-Ala groups on the interior bacteria surface. In addition, vancomycin-modified

attention. The utilization of NIR photothermal therapy in the treatment of bacterial infections has also been attempted. For example, vancomycin-bound Fe₃O₄@Au nanoeggs [25], Fe₃O₄-Au_{rod} necklace-like probes [26] and popcorn-shaped gold nanoparticles [27] were demonstrated as photothermal agents for the selective killing of bacteria. It is noteworthy that lanthanum hexaboride (LaB₆) is also a metal-like plasmonic material. It exhibited a strong NIR absorption via surface plasmon resonance after grinding to nanoscale [28–30]. Recently, we demonstrated that LaB₆ nanoparticles

magnetic nanoparticles have also been demonstrated to be useful as affinity probes to trap vancomycin-resistant Gram-positive or

Photothermal therapy is an attractive therapeutic technique

that uses photosensitizers to generate heat from light absorption

which then kills cancer cells [10,11]. Plasmonic nanomaterials with

high optical absorption in the near-infrared (NIR) region are usu-

ally used as the photosensitizers because they not only give this

technique spatial selectivity but also avoid the nonspecific heating

of healthy cells and allow deeper penetration into tissues [12]. Typical plasmonic nanomaterials used for NIR photothermal ther-

apy include gold nanorods [13-15], gold nanoshells [16,17], gold

nanocages [18], single-walled [19-21] or multi-walled [22] carbon

nanotubes, graphene or reduced graphene oxide [23] and germa-

nium [24]. Among them, gold-based nanomaterials received most

^{*} Corresponding author. Tel.: +886 6 2757575x62680; fax: +886 6 2344496. *E-mail address:* chendh@mail.ncku.edu.tw (D.-H. Chen).

Fig. 1. Fabrication of Van-LaB_6@SiO_2/Fe_3O_4 nanoparticles for the targeted magnetic separation and NIR photothermal ablation of bacteria.

possessed an excellent NIR photothermal conversion property comparable and even slightly superior to gold-based nanomaterials [31]. Because of the relatively low price, LaB₆ nanoparticles might be used as an alternative to gold-based nanomaterials for NIR photothermal therapy.

Magnetic nanocarriers have been widely used in bioseparation, enzyme immobilization, drug delivery, hyperthermia and magnetic resonance imaging [32–34]. The combination of LaB₆ nanoparticles with magnetic nanoparticles makes the resulting composite nanoparticles magnetically recoverable and efficient in the separation of targets. Furthermore, the composite nanoparticles could be agglomerated via magnetic assembly. The NIR irradiation-induced heating on the agglomerated nanoparticles should be more efficient than on the dispersion solution of nanoparticles. Thus, the combination with magnetic nanoparticles might thereby decrease the time required to effectively inhibit the bacterial cell growth or to kill the bacteria [25]. Accordingly, in this work, vancomycin and Fe_3O_4 nanoparticles were bound onto the surface of silica-coated LaB_6 ($LaB_6@SiO_2$) nanoparticles successively to develop vancomvcin-modified LaB₆@SiO₂/Fe₃O₄ (Van-LaB₆@SiO₂/Fe₃O₄) composite nanoparticles for the targeted magnetic separation and thermal ablation of bacteria. The silica coating of the LaB₆ nanoparticles was done to improve the stability and biocompatibility.

The fabrication of Van-LaB₆@SiO₂/Fe₃O₄ composite nanoparticles is shown in Fig. 1. First, the surface of LaB₆@SiO₂ nanoparticles was modified with 3-(triethoxysilyl)propylsuccinic anhydride (TESPSA) to introduce the carboxyl group to yield the carboxylated LaB₆@SiO₂ (COOH-LaB₆@SiO₂) nanoparticles [35]. Next, the COOH-LaB₆@SiO₂ nanoparticles were bound with vancomycin via carbodiimide (i.e. N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC)) activation to yield the vancomycin-bound LaB₆@SiO₂ (Van-LaB₆@SiO₂) nanoparticles. Finally, Van-LaB₆@SiO₂/ Fe₃O₄ composite nanoparticles were obtained by further binding the Van-LaB₆@SiO₂ nanoparticles with Fe₃O₄ nanoparticles via carbodiimide activation. To demonstrate the capability of Van-LaB₆@-SiO₂/Fe₃O₄ composite nanoparticles for the targeted magnetic separation and thermal ablation of bacteria, two bacteria (the Gram-positive bacterium Staphylococcus aureus and the Gram-negative bacterium Escherichia coli) were used as the models.

2. Experimental and methods

2.1. Chemicals

Lanthanum hexaboride powders (LaB₆, primary particle size: \sim 1–2 µm) were obtained from Wako Pure Chemical Ind., Ltd.

Ammonium (28 wt.%) and 2-propanol were supplied by J.T. Baker. The grinding beads yttrium-stabilized zirconia (95% ZrO₂, 5% Y₂O₃, density: 6060 kg m⁻³) with a diameter of 50 µm were obtained from Toray Ind., Inc. Ferric chlorides 6-hydrate, ferrous chloride tetrahydrate, tetraethylorthosilicate (TEOS), EDC, vancomycin, 2-(*N*-morpholino)ethanesulfonic acid (MES), sodium chloride, sodium phosphate monobasic, sodium phosphate dibasic, agar and yeast extract were supplied by Sigma–Aldrich Co. Tryptone was obtained from Becton, Dickinson and Co. TESPSA was purchased from Gelest, Inc. The bacteria *S. aureus* and *E. coli* were obtained from the Bioresource Collection and Research Center in Taiwan.

2.2. Preparation of Van-LaB₆@SiO₂ nanoparticles

LaB₆ nanoparticles were prepared according to our previous work [31]. For the silica coating, LaB₆ suspended in 2-propanol (20 ml, 0.4 mg ml⁻¹) was mixed with ammonia (28%, 0.5 ml) and sonicated in an ice bath for 10 min. Subsequently, TEOS (0.5 ml) was added and the mixture was sonicated for 3 h and then stirred for another 21 h. The resulting LaB₆@SiO₂ nanoparticles were collected by centrifugation, washed twice with ethanol and then redispersed into ethanol (5 ml). Next, LaB₆@SiO₂ nanoparticles were modified with carboxyl groups. The LaB₆@SiO₂ suspension was mixed with TESPSA (0.2 ml) and then stirred at 40 °C for 24 h. After centrifugation, the resulting COOH-LaB₆@SiO₂ nanoparticles ware dried in a vacuum oven. For comparison, in the absence of LaB₆@-SiO₂ nanoparticles, the above silica coating process was conducted to yield the pure SiO₂ nanoparticles.

For the binding of vancomycin, the solution of COOH-LaB₆@SiO₂ (1 ml, 10 mg ml⁻¹ in 0.1 M MES buffer at pH 5) was mixed with the solution of vancomycin (5 ml, 1 mg ml⁻¹ in 0.1 M MES buffer at pH 5) and EDC (5 ml, 2 mg ml⁻¹ in 0.1 M MES buffer at pH 5). The mixture was sonicated for 3 h. The resulting Van-LaB₆@SiO₂ nanoparticles were washed with water by centrifugation and redispersed in MES buffer (0.1 M, pH 5).

2.3. Preparation of Van-LaB₆@SiO₂/Fe₃O₄ composite nanoparticles

Fe₃O₄ nanoparticles were prepared by the co-precipitation of Fe²⁺ and Fe³⁺ ions with ammonia solution and following hydrothermal treatment according to our previous work [36]. The ferric and ferrous chlorides (molar ratio 2:1) were dissolved in water (40 ml) at a concentration of 0.3 M iron ions. Chemical precipitation was achieved at 25 °C under vigorous stirring by adding NH₄. OH solution (10 ml, 28%). During the reaction process, the pH was maintained at ~10. The precipitates were heated at 80 °C for 30 min. The resulting Fe₃O₄ nanoparticles were washed several times with water and ethanol, and then dried in a vacuum oven at 70 °C.

For the preparation of Van-LaB₆@SiO₂/Fe₃O₄ composite nanoparticles, the Van-LaB₆@SiO₂ nanoparticles (10 mg ml⁻¹) in 1 ml of MES buffer (0.1 M, pH 5) was mixed with EDC (2 mg ml⁻¹) via sonication for 10 min. Subsequently, Fe₃O₄ nanoparticles (4 mg ml⁻¹) were added to the mixture and then sonicated for 1 h. The resulting Van-LaB₆@SiO₂/Fe₃O₄ composite nanoparticles were washed several times with water and then dried in a vacuum oven.

2.4. Characterization

Transmission electron microscopy (TEM) analysis was carried out using a Hitachi Model H-7500 at 80 kV. The sample was obtained by placing a drop of colloid solution onto a Formvar-covered copper grid and evaporated in air at room temperature. X-ray diffraction (XRD) measurement was performed on a Rigaku D/max III.V X-ray diffractometer using Cu K_{α} radiation ($\lambda = 0.1542$ nm). Download English Version:

https://daneshyari.com/en/article/553

Download Persian Version:

https://daneshyari.com/article/553

Daneshyari.com