ELSEVIER Contents lists available at ScienceDirect # Cell Calcium journal homepage: www.elsevier.com/locate/ceca CrossMark Review # Regulation of IP₃ receptors by cyclic AMP ### Colin W. Taylor Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK #### ARTICLE INFO # Article history: Received 6 October 2016 Received in revised form 27 October 2016 Accepted 27 October 2016 Available online 6 November 2016 Keywords: Ca²⁺ stores Cyclic AMP IP₃ receptor Protein kinase A Parathyroid hormone Signalling junctions #### ABSTRACT Ca²⁺ and cAMP are ubiquitous intracellular messengers and interactions between them are commonplace. Here the effects of cAMP on inositol 1,4,5-trisphosphate receptors (IP₃Rs) are briefly reviewed. All three subtypes of IP₃R are phosphorylated by cAMP-dependent protein kinase (PKA). This potentiates IP₃-evoked Ca²⁺ release through IP₃R1 and IP₃R2, but probably has little effect on IP₃R3. In addition, cAMP can directly sensitize all three IP₃R subtypes to IP₃. The high concentrations of cAMP required for this PKA-independent modulation of IP₃Rs is delivered to them within signalling junctions that include type 6 adenylyl cyclase and IP₃R2. © 2016 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). #### Contents | 1. | Introduction | 4 | |----|--|---| | | Regulation of IP ₃ Rs by PKA | | | | Direct regulation of IP ₃ Rs by cAMP. | | | | Signalling to IP ₃ Rs at cAMP junctions | | | | Acknowledgements | | | | References | 5 | #### 1. Introduction Cyclic AMP and Ca²⁺ are ubiquitous intracellular messengers used by all eukaryotic cells from plants and animals to coordinate their behaviours in response to both extracellular signals and intracellular activity [1–3]. These messengers create a signalling 'bottleneck' through which many extracellular signals funnel to regulate diverse cellular responses. The capacity of a rather limited repertoire of intracellular messengers to selectively regulate cellular activities depends in large part on the spatial organization of the messengers within the cell, the time frames over which they are delivered, and interactions between messengers. The latter often Abbreviations: AC, adenylyl cyclase; EPAC, exchange protein activated by cAMP; IP₃, inositol 1,4,5-trisphosphate; IP₃R, IP₃ receptor; IRAG, IP₃R-associated cGMP kinase substrate; IRBIT, IP₃R-binding protein released by IP₃; PKA, protein kinase A (cAMP-dependent protein kinase); PKG, protein kinase G (cGMP-dependent protein kinase); PLC, phospholipase C; P_0 , single-channel open probability; PTH, parathyroid hormone E-mail address: cwt1000@cam.ac.uk endows signalling pathways with capacities to function as coincidence detectors: conveying signals onward only when several conditions are met [4]. As might be expected of the prototypical intracellular messengers, analyses of the interactions between cAMP and Ca²⁺ have a long history [5,6] that has revealed interactions at many levels. Ca²⁺, for example, regulates formation and degradation of cAMP [2,7], and cAMP can regulate both the channels that allow Ca²⁺ to flow into the cytosol and the Ca²⁺ pumps that extrude it [8,9]. A ubiquitous pathway from extracellular stimuli to cytosolic Ca²⁺ signals is provided by receptors that stimulate phospholipase C (PLC), production of inositol 1,4,5-trisphosphate (IP₃) and thereby Ca²⁺ release through IP₃ receptors (IP₃R) [10]. Cyclic AMP also modulates this pathway by, for example, regulating PLC [11] and the coupling of receptors to PLC [12]. However, in this short review, I focus on just one level of interaction, that between cAMP and IP₃Rs [13,14]. IP₃R subunits are encoded by three genes in vertebrates. The three large, closely related subunits assemble into homo- and hetero-tetrameric structures, which form large-conductance Ca²⁺-permeable channels within intracellular membranes, primarily those of the endoplasmic reticulum [10]. Opening of the central pore is initiated by binding of IP₃ to all four IP₃R subunits [15], which evokes conformational changes within the N-terminal domains of the IP₃R [16]. These conformational changes are proposed to facilitate binding of Ca²⁺, which then triggers opening of the pore. Hence, the IP₃R is itself a coincidence detector, responding only when provided with both cytosolic IP₃ and Ca²⁺. High-resolution structures of the N-terminal region of an IP₃R with and without IP₃ bound [16], and cryo-electron microscopy reconstructions of the entire IP₃R in a closed state [17] have begun to reveal the workings of the IP3R machinery. However, the mechanisms linking IP₃ binding to channel gating are not yet fully resolved. While IP₃ and Ca²⁺ are the essential regulators of IP₃R gating, many additional signals modulate IP₃R behaviour [18]. My focus on cAMP therefore provides only a rather restricted view of the capacity of IP₃Rs to integrate information provided by different signalling pathways. #### 2. Regulation of IP₃Rs by PKA Cyclic AMP-dependent protein kinase (protein kinase A, PKA), exchange proteins activated by cAMP (EPACs), cyclic nucleotideactivated cation channels (CNGs), and some cyclic nucleotide phosphodiesterases (PDEs) are the major targets of cAMP in mammals. At least some of these targets regulate IP₃-evoked Ca²⁺ signalling. PKA, for example, stimulates Ca²⁺ uptake into the sarcoplasmic reticulum, and EPACs through the small G protein rap2B stimulate PLCE [11]. However, only PKA has been convincingly shown to interact directly with IP₃Rs. The three IP₃R subtypes are closely related, but each has a distinctive distribution of PKA phosphorylation sites. The many effects of cAMP within Ca²⁺ signalling pathways were sources of some confusion in the pioneering studies of IP₃R phosphorylation [19], but the consensus now is that PKA-mediated phosphorylation of IP₃R1 and IP₃R2 enhances their activity, while the functional significance of such phosphorylation for IP_3R3 is less clear [14,20]. Two residues (S¹⁵⁸⁹ and S¹⁷⁵⁵) within the central cytosolic domain of IP₃R1 are phosphorylated by PKA, and their replacement by non-phosphorylatable alanine residues confirms that they are the only sites [21]. Phosphorylation of IP₃R1 by PKA or introduction of phosphomimetic residues (S¹⁵⁸⁹E/S¹⁷⁵⁵E) do not themselves open the channel, but they increase the open probability (P_0) of channels activated by IP₃. The increased P_0 results from shortening of the gaps between bursts of channel openings and an increase in the duration of the bursts, with no obvious effect on IP3 binding or the sensitivity to Ca²⁺ regulation [22]. Hence, phosphorylation of IP₃R1 by PKA improves the coupling of IP₃ and Ca²⁺ binding to channel gating by both stabilizing the bursting state of the IP₃R and destabilizing a prolonged closed state. An alternative splice site (S2, residues 1693-1732), which encodes 40 residues and is removed from non-neuronal IP₃R1, abuts the second phosphorylation site (S¹⁷⁵⁵). For the neuronal S2⁺ form of IP₃R1, S¹⁷⁵⁵ entirely mediates the effects of PKA, while in the peripheral S2⁻ form both residues (S1589 and S1755) must be phosphorylated for PKA to enhance IP₃-evoked Ca²⁺ release [23]. Effective phosphorylation and dephosphorylation of IP₃R1 are facilitated by tethering of PKA to IP₃R1 by AKAP9 (A-kinase-anchoring protein 9) [24] and of the protein phosphatase, PP1 α , by IRBIT [25], AKAP9 or directly to the C-terminal tail of IP₃R1 [26]. The consensus sequences for PKA and cGMP-dependent protein kinase (PKG) are similar, such that some residues (e.g. S^{1755} in IP_3R1S2^+) are phosphorylated by either kinase. Yet in native tissues PKG and PKA often exert opposing effects on IP_3 -evoked Ca^{2+} release. The difference may, at least in part, be due to expression of IRAG (IP_3R -associated cGMP kinase substrate), which blocks phosphorylation of IP₃R1 by PKA, and IRAG phosphorylated by PKG inhibits IP₃R [27]. Hence, IRAG diverts PKG from the PKA-phosphorylation sites and imposes its own inhibition. PKA also modulates the interaction of IP₃R1 with its endogenous antagonist, IRBIT (IP₃R-binding protein released by IP₃), apparently decreasing the affinity for IRBIT so that IP₃ more effectively competes for occupancy of their shared binding site on the IP₃R [28]. Hence in secretory epithelia, receptors that stimulate formation of cAMP and IP₃ synergistically stimulate release of IRBIT from IP₃Rs, and IRBIT then directly stimulates two of the ion transporters that sustain fluid transport [28]. Long before the discovery IP₃Rs, synergistic stimulation of a Ca²⁺-sensitive K⁺ channel by α_1 -adrenoceptors (which stimulate PLC) and β -adrenoceptors (which stimulate formation of cAMP) in hepatocytes suggested that cAMP might enhance receptor-mediated Ca²⁺ release from intracellular stores [29]. Subsequent studies confirmed that PKA stimulates phosphorylation of hepatic IP₃Rs [30] and potentiates IP₃-evoked Ca²⁺ release [31,32]. IP₃R2, the major IP₃R subtype in hepatocytes, is phosphorylated by PKA at a single residue (Ser⁹³⁷), although others suggest that IP₃R2 is a rather poor substrate for PKA [20]. Ser⁹³⁷ is unique to IP₃R2, but the functional consequences of the phosphorylation appear similar to those seen with IP₃R1, namely enhanced bursts of IP₃R gating [33]. Additional effects of PKA, including an increase in IP₃ binding affinity [30] and recruitment of IP₃Rs into functional Ca²⁺ stores [32], may also contribute to the effects of PKA on IP₃R2 in intact cells. The effects of PKA on IP_3R3 have been least explored. In intact cells, IP_3R3 is phosphorylated by PKA at three sites (S^{916} , S^{934} , S^{1832}) that are unique to IP_3R3 , with S^{934} being the most extensively phosphorylated [34]. But, at least in cells expressing only IP_3R3 , PKA has no effect on IP_3 -evoked Ca^{2+} release triggered by cell-surface receptors [34]. Whether the phosphorylation affects other aspects of IP_3R3 behaviour remain to be determined. #### 3. Direct regulation of IP₃Rs by cAMP In HEK-293 cells stably expressing human type 1 receptors for parathyroid hormone (PTH), PTH stimulates formation of cAMP, but it does not alone evoke an increase in cytosolic Ca²⁺ concentration ($[Ca^{2+}]_c$). However, PTH potentiates the increase in $[Ca^{2+}]_c$ evoked by receptors that stimulate PLC, the endogenous muscarinic M₃ receptors of HEK-293 cells, for example, which can be activated by carbachol (Fig. 1A). This effect of PTH is mimicked by stimulation of endogenous prostanoid receptors or β -adrenoceptors, by direct activation of adenylyl cyclase with forskolin or by addition of a membrane-permeant analog of cAMP, 8-Br-cAMP. The nonadditive effects of maximally effective concentrations of PTH and 8-Br-cAMP confirm that the effect of PTH on carbachol-evoked Ca²⁺ signals is entirely mediated by cAMP (Fig. 1B) [35,36]. Responses to other PLC-coupled receptors are also potentiated by PTH, and the enhanced responses are not associated with increased production of IP₃ [35,37]. Furthermore, cAMP also potentiates the Ca²⁺ signals evoked by a membrane-permeant form of IP₃ (IP₃-BM) [38]. These results, demonstrating that cAMP acts downstream of IP₃, are important because cAMP can, through EPACs, stimulate PLCε [11]. However, the effects of PTH are neither mimicked by EPACselective analogs of cAMP [36] nor blocked by an EPAC antagonist [39]. The enhanced IP₃ –evoked increases in $[Ca^{2+}]_c$ are not due inhibition of Ca²⁺ extrusion from the cytosol by cAMP [38]. Furthermore, cAMP potentiates IP₃-evoked Ca²⁺ release in permeabilized cells [40], and it enhances IP₃-gated channel activity in nuclear patch-clamp recordings of IP₃R [40]. These results, where cAMP potentiates the activation of IP₃R by IP₃, seem consistent with the many reports suggesting that phosphorylation of IP₃R1 and IP₃R2 by PKA enhances responses to IP₃ (see preceding section). However, # Download English Version: # https://daneshyari.com/en/article/5530557 Download Persian Version: https://daneshyari.com/article/5530557 <u>Daneshyari.com</u>