
Taxing the development structure of open source communities: An
information processing view

Mohammad AlMarzouq a,1, Varun Grover b,⁎,2, Jason Bennett Thatcher b,3

a Department of Quantitative Methods and Information Systems, College of Business Administration, Kuwait University, PO Box 5486 Safat 13115, Kuwait
b Department of Management, College of Business and Behavioral Sciences, Clemson University, Clemson, SC 29634, United States

a b s t r a c ta r t i c l e i n f o

Article history:
Received 25 June 2014
Received in revised form 25 July 2015
Accepted 14 September 2015
Available online 9 October 2015

Keywords:
Free/Libre and Open Source Software
FLOSS
Organizational Information Processing Theory
Software development
Modularity
Brooks' law

Committers in Free/Libre and Open Source Software (FLOSS) projects shoulder responsibility for evaluating
contributions and coordinating the broader community development effort. Given committers' central role in
development processes, we examinewhether how they are organized influences FLOSS community performance.
Specifically, drawing on the lens of Organizational Information Processing Theory (OIPT), we develop amodel that
explains how committal a structure's ability to manage information impacts FLOSS community performance.
Based on archival data drawn from 237 active FLOSS communities, we found that the performance of centralized
and decentralized FLOSS communities varied with three conditions tied to information flows: task routineness,
uncertainty and task interdependence. Our empirical results support the idea that FLOSS communities performing
development tasks that are generally routine, highly interdependent, and generate little contributor uncertainty
will perform better under a centralized committal structure. On the other hand, decentralized committal structures
thrive under the conditions of task non-routineness, low task interdependence, and high contributor uncertainty.
We conclude with a discussion of results, limitations, and directions for future research.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Free/Libre and Open Source Software (FLOSS) communities are self-
organizing, online groups of developers who create freely available soft-
ware products. Within FLOSS communities, while contributors write
source code patches that implement a feature or fix a bug, committers
review their submissions andapprove their integration into the commu-
nity source code base [81]. Committers are responsible for directing
individual members' development efforts as well as coordinate their
output's integration into a software package [74]. Often, committers
are promoted from the ranks of contributors who have demonstrated
superior levels of competence as well as dedication to a project. Even
though contributors and committers are not directly compensated,
FLOSS communities often create applications that are equivalent to,
or supplant, commercially available software. These products are
increasingly used by individuals and organizations to complete
essential tasks [31,86].

That a large, self-managed group of distributed volunteer developers
can develop such high quality software [4] defies the conventional

wisdom of software engineering. Brooks' Law [12] suggests that as
the number of developers grows, ramp up effects make conventional
software projects more inefficient and ineffective due to delays tied to
communication and coordination costs. For example,when an additional
developer is added, Brooks argues that production is slowed, and errors
more likely, while that developer acquires knowledge about the
codebase. One might question, based on Brooks' Law, the viability of
large FLOSS projects where the size and number of participations
might hinder progress. However, large FLOSS projects like the Linux
Kernel are thriving in ways that suggest we still have more to learn
about the software development process [48].

To explain FLOSS communities' efficacy, open source developers
argue that unique software development practices, explain their ability
to coordinate activities as effectively as for-profit developers. Raymond
[81] argues that because the source code conveys rich information,
FLOSS developersmust communicate less to develop projects. Moreover,
Raymond argues that the FLOSSphilosophy of releasing software updates
early and often, provides opportunities for early correction of bugs and
more incremental changes in the software, thereby reducing developers'
need to directly communicate frequently. Raymond described FLOSS
communities as a bazaar for ideas, and FLOSS advocates contend that
these bazaars can compete with traditional software development
companies.

However, not all FLOSS communities are created equal.
Krishnamurthy [47] found that the majority of FLOSS communities
were highly centralized. Moreover, researchers have found substantial

Decision Support Systems 80 (2015) 27–41

⁎ Corresponding author.
E-mail addresses: almarzouq@mis.cba.edu.kw (M. AlMarzouq), vgrover@clemson.edu

(V. Grover), jthatch@clemson.edu (J.B. Thatcher).
1 Tel.: +965 24988630.
2 Tel.: +1 864 656 3773.
3 Tel.: +1 864 656 3751.

http://dx.doi.org/10.1016/j.dss.2015.09.004
0167-9236/© 2015 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Decision Support Systems

j ourna l homepage: www.e lsev ie r .com/ locate /dss

http://crossmark.crossref.org/dialog/?doi=10.1016/j.dss.2015.09.004&domain=pdf
http://dx.doi.org/10.1016/j.dss.2015.09.004
mailto:jthatch@clemson.edu
http://dx.doi.org/10.1016/j.dss.2015.09.004
http://www.sciencedirect.com/science/journal/01679236


variation in FLOSS communities' structure and efficacy [20,23,64].
Interestingly, FLOSS research offers empirical support that some
FLOSS communities match Raymond's description of a bazaar [44,85]
while others are more centrally controlled and observe similar traits
as traditional software teams described by Brooks [13]. The fact that
both views are represented in practice, suggests that much remains to
be learned about how to optimally structure FLOSS communities such
that they develop better software products.

To better understand FLOSS community's performance, this study
delineates contingency factors regarding developmental tasks
(routineness, uncertainty, inter-dependence) and hypothesizes
how they can influence the ability to successfully develop code. We
then examine how the structure of FLOSS communities changes
this relationship. Specifically, we examine how the emergent committal
structureswithin FLOSS communities relate to their ability to create and
update software. In order to frame our study, we leverage insights from
Organizational Information Processing Theory (OIPT) [33] to help
reconcile Brooks and Raymond's views on performance. The remainder
of this study unfolds as follows. First, we review FLOSS community
structure and identify different committal structures. Then, we introduce
OIPT as a potential explanation for variance in FLOSS community perfor-
mance. Drawing on OIPT, we develop a model that suggests FLOSS
community performance reflects the fit between the development task
and the development structure. Next, we discuss the methods used to
collect data and evaluate our research model. Finally, we discuss
the results, implications, and limitations of our study and offer directions
for future research.

2. Free/Libre and Open Source Software (Floss) Communities

FLOSS communities have been described as knowledge-sharing and
production communities [54]. To integratemembers' voluntary contribu-
tions into software, FLOSS communities rely on emergent leaders and
coordination processes [73]. Leaders self-select, or are picked by existing
leaders from the membership, based on their abilities and interests in
tasks that they perform [10,24,54,81,89]. Moreover, because most
FLOSS members participate for a short time [74,89], FLOSS communities'
coordinating structures tend to change over time [72].

Although dynamic, FLOSS community structure can be inferred from
patterns of member participation. In this study since we infer structural
attributes from the activity of members, it is useful to contextualize this
workwith a brief description of the nature of the community's structure
and membership. Crowston and Howison [23] describe FLOSS
community structure as onion shaped with four layers of members:
the core, the periphery, active users, and passive users (see Fig. 1).
Core members are formal members of the original development
team and often perform more frequent and consistent development
work than periphery members [23,88]. Active and passive users are

merely consumers of the FLOSS community product; however, active
users do contribute feature requests and bug reports to the developer
community [104].

FLOSS communities are bound by howdevelopment and communica-
tion structures shape member's interaction. The development structure
organizes the activities of core and peripheral developers. The communi-
cation structure spans every layer of a FLOSS community to convey
information on the software [23,64]. Within the development structure
(core and peripheral), members play two roles: committer and
contributor. Both types ofmembers contribute to software development.
However, the committers also possess access rights to the community
code base. As a result, committers can incorporate changes directly
into the community code base, while contributors have to work with a
committer to do so. Committers rise from the ranks of the contributors
after they have proven their trustworthiness and technical competence
through their continued contributions [82,89].

Committers are the busiest FLOSS community members. Not only
are they themselves developers, they are also tasked with making
decisions about other contributors' work [89]. For example, if a contribu-
tion is accepted, the committer is tasked with integrating the contributed
patch into the code base, which places more responsibility and work on
the committer's shoulders, especially when the committed code breaks
the work of other developers.

Because of committers' responsibility for assessing and integrating
all contributions, they represent potential bottlenecks in the FLOSS
development process (cf. [37]). To illustrate that this is a problem that
many FLOSS communities face, we present excerpts from the guidelines
of some well known FLOSS projects in Table 1. These community
guidelines (in Subversion,Mozilla, or Apache), suggest that committers'
capacity to manage contributions drives the FLOSS development
process and by understanding how committers are structured to
manage their workload, we may glean insight into FLOSS communities'
performance [37].

Committal structure refers to how workload is distributed among
the committers. It is a result of a conscious community decision related
towho is given authority to commit code changes rather than a result of
deciding to use FLOSS development tools [61], and is assumed to reflect
the centralization tendencies in the community [36]. FLOSS communi-
ties are centralized when committers are a small group relative to the
development structure'smembership. In an extreme case, a community
with only one authorized committer would be highly centralized. The
committal structure is decentralizedwhen committers represent a larger

Focus of
Study

Fig. 1. FLOSS community structure (adapted from [23]).

Table 1
Evidence of delays in FLOSS the development process.

Community Excerpt Notes

Subversion If you don't get a response for a
while, and don't see the patch
applied, it may just mean that
people are really busy.

Patch committals can experience
delays.

Mozilla Getting attention: If a reviewer
doesn't respond within a week or
so of the review request:
• Join #developers …

Because delays in the review
process are all too common, the
Mozilla community has a process
for how to deal with the problem.

Apache What if my patch gets ignored?
Because Apache has only a small
number of volunteer developers,
and these developers are often
very busy, it is possible that your
patch will not receive any
immediate feedback. Developers
must prioritize their time, dealing
first with serious bugs and with
parts of the code in which they
have interest and knowledge.
Here are some suggestions on
what you can do to encourage
action on your patch:…

Delays in patch committal are all
too common and the community
explains the reasons and gives
suggestions on how to alleviate
the problem.

28 M. AlMarzouq et al. / Decision Support Systems 80 (2015) 27–41



Download English Version:

https://daneshyari.com/en/article/553056

Download Persian Version:

https://daneshyari.com/article/553056

Daneshyari.com

https://daneshyari.com/en/article/553056
https://daneshyari.com/article/553056
https://daneshyari.com

