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a b s t r a c t

With the cell therapy industry continuing to grow, the ability to preserve clinical grade cells, including
mesenchymal stem cells (MSCs), whilst retaining cell viability and function remains critical for the
generation of off-the-shelf therapies. Cryopreservation of MSCs, using slow freezing, is an established
process at lab scale. However, the cytotoxicity of cryoprotectants, like Me2SO, raises questions about the
impact of prolonged cell exposure to cryoprotectant at temperatures >0 �C during processing of large cell
batches for allogenic therapies prior to rapid cooling in a controlled rate freezer or in the clinic prior to
administration. Here we show that exposure of human bone marrow derived MSCs to Me2SO for �1 h
before freezing, or after thawing, degrades membrane integrity, short-term cell attachment efficiency
and alters cell immunophenotype. After 2 h's exposure to Me2SO at 37 �C post-thaw, membrane integrity
dropped to ~70% and only ~50% of cells retained the ability to adhere to tissue culture plastic. Further-
more, only 70% of the recovered MSCs retained an immunophenotype consistent with the ISCT minimal
criteria after exposure. We also saw a similar loss of membrane integrity and attachment efficiency after
exposing osteoblast (HOS TE85) cells to Me2SO before, and after, cryopreservation.

Overall, these results show that freezing medium exposure is a critical determinant of product quality
as process scale increases. Defining and reporting cell sensitivity to freezing medium exposure, both
before and after cryopreservation, enables a fair judgement of how scalable a particular cryopreservation
process can be, and consequently whether the therapy has commercial feasibility.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Cell therapies hold the potential to revolutionise healthcare as
regenerative medicines, replicating the success of the human
therapeutic protein industry. However, cell therapies are more
complex than protein therapeutics, which to the makes the pres-
ervation, long-term storage and shipment of cellular therapies a
challenging prospect. Cryopreservation methods for long-term
storage are described only in brief when reported in cell therapy
clinical trial protocols. For example, while a cooling rate may be

provided, processing times before freezing or after thawing are
rarely given [13].

Components commonly used in lab-based cryopreservation
protocols, including animal serum and dimethylsulfoxide introduce
commercial, safety and regulatory risks for new therapies [38].
Animal-component free cryopreservation solutions are already
available, such as the CryoStor® range from BioLife Solutions and
PrimeXV®-FreezIS from Irvine Scientific. However, with cell-based
therapeutics approaching the critical Phase III stage of develop-
ment, there is a clear need to develop cryopreservation processes
that operate at meaningful scale, and which integrate with other
stages of an overall bioprocess. A well-integrated cryopreservation
process enables the decoupling of commercially scaled cell therapy
manufacture from final delivery and administration to patients.
This in turn allows more cost-effective supply chain strategies for
initial cell banking of isolated donor material, as well as the final
product. The ideal result is an inventory of well-stored and

Abbreviations: CPA, cryoprotective agent; hMSC, human mesenchymal stem
cell; ISCT, International Society for Cellular Therapy; pNNP, p-nitrophenyl phos-
phate; MoA, mechanism of action.
* Corresponding author.

E-mail address: k.coopman@lboro.ac.uk (K. Coopman).

Contents lists available at ScienceDirect

Cryobiology

journal homepage: www.elsevier .com/locate/ycryo

http://dx.doi.org/10.1016/j.cryobiol.2016.09.004
0011-2240/© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Cryobiology 73 (2016) 367e375

http://creativecommons.org/licenses/by/4.0/
mailto:k.coopman@lboro.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cryobiol.2016.09.004&domain=pdf
www.sciencedirect.com/science/journal/00112240
www.elsevier.com/ locate/ycryo
http://dx.doi.org/10.1016/j.cryobiol.2016.09.004
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.cryobiol.2016.09.004
http://dx.doi.org/10.1016/j.cryobiol.2016.09.004


consistent cell therapy product, which can be globally distributed
and administered at an affordable cost.

Human mesenchymal stem cells (hMSCs) are the most likely
candidates for early successful human stem cell therapies, with
hundreds of clinical trials evaluating their therapeutic potential
[39]. MSCs are multipotent; relatively easy to isolate; have the ca-
pacity for self-renewal and proliferation and are undergoing
assessment for a number of therapeutic indications including
immunological, cardiac and musculoskeletal conditions [17,28].
From a manufacturing perspective, clear definition of critical
quality attributes and a link to a therapeutic mechanism of action
(MoA) is necessary. Unfortunately, the complexity of MSCs and
diversity of patients and individual disease progression has resul-
ted in a lack of clarity around MoA for these therapies [4]. A variety
of potency assays have been developed for some therapeutic in-
dications, but at present there is no consensus on which should be
used for a given cell type and therapeutic indication. The Interna-
tional Society for Cellular Therapy (ISCT) recommends a minimal
hMSC specification as being adherent to culture plastic; positive
(�95%) for the expression of CD73, CD90 and CD105, negative
(�2%) for the expression of CD14, CD19, CD34, CD45 and HLA-DR,
and possessing the capacity to differentiate towards the chondro-
genic, adipogenic and osteogenic lineages in vitro [8]. These
guidelines continue to be widely used to specify identity assays for
MSCs.

Using cryopreservation to decouple production and delivery of
hMSC-based therapies is a popular strategy, as demonstrated by a
2013 survey highlighting that over 80% of MSC-based regulatory
submissions used cryopreservation to store and transport the final
product [23]. For example, Prochymal® (Mesoblast, USA), which has
been conditionally approved for use in children with graft-versus-
host disease in New Zealand and Canada, is stored in 15 mL Cry-
ocyte bags with 10% (v/v) Me2SO [14]. However, recent reports have
suggested that cryopreserved cells do not perform as well thera-
peutically compared with freshly cultured cells [10,25]. Cryopres-
ervation may be one of the reasons, as well as in vitro cell age, why
several recent hMSC clinical trials have failed to reach their primary
end-points, in contrast to earlier academic-led trials using freshly
cultured cells. Given the technical nuances of cryopreservation, it is
important to determine whether transient loss of cell function is an
unavoidable feature of cryopreservation, or whether it is caused by
aspects of the process that differ with process scale.

Me2SO has been used as a cryoprotectant since the 1950s [21],
but there is some evidence of rare but significant adverse effects in
patients, including strokes, heart attacks and haemorrhages after
infusion with bone marrow cryopreserved in 10% (v/v) Me2SO [6].
Notably, not all adverse reactions can be directly attributed to
Me2SO [34] and the FDA Guidance for Human Somatic Cell Therapy
and Gene Therapy [37] does not prohibit the use of Me2SO as a CPA.
However, there is a perception that minimizing exposure of cells to
Me2SO will mitigate infusion-related effects in patient and impor-
tantly, Me2SO is also cytotoxic to human cells above 0 �C and has
been linked to changes in differentiation capacity of stem cells
[1,9,36,43,44]. The mechanisms of Me2SO cytotoxicity are not well
defined, but may be related to the enhanced diffusion of other
molecules, including toxins, across cell membranes [42], or through
destabilisation of normal ionic homeostasis. The use of Me2SO and
other permeating cryoprotectants must be managed carefully to
minimise the transplantation of poorly functioning cells; dead
cells; cell debris or potential cytotoxins into patients.

Cells are often processed in small batches for routine research
using passive slow cooling devices (e.g. Mr. Frosty™ or CoolCell®),
with modest cell densities around 1 � 106 cell/mL and cells being
kept on ice until transfer into their cooling device. However,
working cell banks for manufacturing can contains hundreds of

vials and allogeneic therapies are expected to require lot sizes of
1� 109 or 1� 1010 cells to meet market demands at affordable cost,
with each dose containing 5 � 107 - 2.5 � 108 cells [31]. Cryo-
preservation processes will therefore need to be in place to enable
preservation of large numbers of small cryovials for banking and
cryobags or larger vials (e.g. Crystal® or Daikyo Crystal Zenith®

vials) for cell product packaging. In both instances, processing
times will increase compared to lab scale and maintaining chilled
temperatures during vial filling and the particulate testing required
by USP <790> (Visible particulates in injections) for product vials is
an operational burden. This means that the detrimental effects on
cell quality of exposure to cryoprotectants like Me2SO will likely
impose limits to the achievable process scales for hMSC therapy
manufacturing. For example, it has been reported that for recom-
binant baby hamster kidney (rBHK) cells, cryopreservation bags
must be filled within a 2 h window to avoid adverse effects from
Me2SO exposure [15]. Similarly, Hunt et al. [16] showed that the
“recovery index”, a measure of viability from membrane integrity
and colony-forming-ability after thaw, of CD34 positive cells can be
reduced by as much as 50% when exposed to 25% (v/v) Me2SO for
up to an hour at 20 �C. Katkov et al. [18] showed that human em-
bryonic stem cells lose around 50% expression of the vital Oct-4
marker after exposure to Me2SO using standard protocols. These
examples indicate that exposure of MSCs to Me2SO will need to be
limited in order to maintain therapeutically desirable cell charac-
teristics. Furthermore, these tolerances will need to be defined and
built into not just manufacturing but also clinical practice. For
example, with product thawing and preparation for infusion or
injection the implications of failures in a thawing protocol or device
(e.g. long-term maintenance of the vial at > ambient temperature)
and delays in preparing the patient for treatment must be consid-
ered in order to develop preparation guidelines for the product. To
that end, we investigated the effect of Me2SO on cell quality by
exposing bone marrow derived hMSCs to this cryoprotectant for
varying amounts of time i) without, ii) prior to, and iii) after
employing standard freezing protocols. A maximum exposure time
of 2 h at ambient temperatures prior to freezing or at 37 �C after
freezing was chosen to represent worst case scenarios. Results are
discussed in terms of the risk of product failure with cells consider
to be ‘overexposed’ to Me2SO once cell characteristics such as
attachment capability and phenotype fall below pre-defined stan-
dards such as those set by the ISCT or FDA. Furthermore, the
sensitivity of hMSCs to Me2SO was compared to that of an
osteosarcoma-derived cell line, HOS TE85, to establish whether
hMSCs are more or less susceptible to Me2SO-induced effects than
similarly sized human cells.

2. Materials and methods

2.1. Cell culture

Osteosarcoma cells of the line HOS TE85 were acquired at pas-
sage 51 (ATCC, USA) and hMSCs derived from bone marrow at two
passages post extraction were cultured as adherent monolayers in
25 cm2 T-flasks (Nunc, UK). hMSCs had been extracted from ethi-
cally sourced fresh bone marrow aspirate obtained from Lonza
(Lonza, Cologne AG) from a healthy donor after the patient pro-
vided informed consent. HOS TE85 cells were incubated in MEM
medium (a-MEM, 1 g/l glucose with 10% (v/v) US origin FBS (Per-
formance Plus) and 2 mM L-glutamine, (Thermo-Fisher, UK)), and
hMSCs in DMEM medium (made up in the same way with 1 g/L
glucose (Thermo-Fisher, UK) in place of a-MEM) in a humidified
incubator at 37 �C, 5% CO2. Passaging was done every 2e3 days
(HOS) or 7 days (hMSC). A 100% medium exchange was done for
hMSCs on day 4. Spent-mediumwas collected before passaging for
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