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Abstract
Background aims. Despite ethnic diversity and ready availability of cryopreserved, human leukocyte antigen–typed cord blood
(CB), delayed engraftment remains a significant hurdle to successful CB transplantation. Suboptimal homing of CB he-
matopoietic stem and progenitor cells (HSPCs) to the hematopoietic microenvironment (HM) is thought to be responsible
and due to low levels of HSPC fucosylation. Fucosylation (decoration with sialyl-LewisX) may improve HSPC homing to
HM by increasing the strength of HSPC/E-selectin interactions, where E-selectin is constitutively expressed by HM mi-
crovasculature. Enforced fucosylation of CB HSPCs using fucosyltransferases, increases the rate and magnitude of engraftment
in xenogeneic transplant models. However, it is unclear whether endogenously fucosylated and non-fucosylated CB HSPC
are qualitatively identical or whether endogenous fucosylation marks a qualitative difference between CB HSPC. If quali-
tatively identical, non-fucosylated CB HSPCs represent a good target for enforced fucosylation with improved engraftment
conferred on an increased number of otherwise qualitatively identical HSPC. If qualitatively different, then conferring en-
graftment upon a majority, possibly lower “quality,” non-fucosylated HSPCs by enforced fucosylation might inadvertently
compromise engraftment. Methods. Functional (xenogeneic engraftment, colony-forming unit and selectin-binding assays)
and phenotypic analyses of fluorescence-activated cell sorting–isolated, endogenously fucosylated and non-fucosylated CB
CD34+ cells were performed. Results. Endogenous fucosylation of CB HSPCs exists as a continuum. Endogenously fucosylated
HSPCs engrafted more efficiently in a xenogeneic transplantation model than non-fucosylated HSPCs. Outside of the dif-
ferences in endogenous fucosylation, no other qualitative (functional and/or phenotypic) differences were identified.
Discussion. The majority of endogenously non-fucosylated CB HSPCs represent a good target for enforced fucosylation
with the goal of improving engraftment following CB transplantation.
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Despite the ethnic diversity and ready availabili-
ty of human leukocyte antigen–typed, cryopreserved
cord blood (CB) units as a source of hematopoietic
tissue for transplantation [1–15], delayed engraft-
ment remains an important clinical barrier to its use
compared with the use of bone marrow (BM) or mo-
bilized peripheral blood (mPB) [16–18].The delayed
engraftment associated with CB transplantation (CBT)
may, at least in part, be a consequence of subopti-
mal homing of CB hematopoietic stem and progenitor
cells (HSPCs) to the hematopoietic microenviron-
ment. For effective homing and engraftment to the
hematopoietic microenvironment cell surface ligands

expressed by HSPCs need to interact with specific re-
ceptors expressed by the endothelial cells lining the
blood vessels of the hematopoietic microvasculature.
Although the expression of certain cell surface gly-
coproteins alone might be sufficient for homing to
hematopoietic tissues [19–27], there is evidence that
the binding affinity of some classes of cell surface gly-
coproteins, particularly selectin ligands, can be
enhanced when they are fucosylated. Fucosylation is
a fucosyltransferase (FT)-driven process that deco-
rates specific sites on cell surface molecules with sialyl-
LewisX (sLeX) moieties [28–35]. Fucosylation has been
shown to play a key role in the selectin-associated
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homing of lymphocytes and other leukocytes [28,31].
P- and E-selectins are constitutively expressed by the
microvasculature of the hematopoietic system [36], and
the hypothesis that fucosylation may also play a key
role in the homing of HSPCs to the hematopoietic mi-
croenvironment has been proposed.

Relative levels of cell surface fucosylation can be
revealed by the use of the HECA-452 antibody (also
known as anti-human cutaneous lymphocyte associ-
ated antigen). Comparative studies have revealed that
the proportion of fucosylated HSPCs present in CB
is markedly lower than that found in BM or mPB [37].
This led to the hypothesis that the delayed engraft-
ment associated with CBT is due, at least in part, to
this relatively low proportion of endogenously
fucosylated CB HSPCs. This hypothesis was sup-
ported by the demonstration that enforced fucosylation
of CB HSPCs using recombinant FT-VI [32,37] or
FT-VII [38] markedly improved the rate and magni-
tude of xenogeneic engraftment in the NOD-SCID
IL-2Rγnull (NSG) mouse model. These data provid-
ed the rationale for the use of ex vivo enforced
fucosylation as a means to increase the proportion of
fucosylated HSPCs in CB products with the goal of
improving engraftment following CBT in the clinic.
A clinical trial to assess the impact of ex vivo en-
forced fucosylation in a double CB transplant (DCBT)
setting is currently underway at the University ofTexas
M.D.Anderson Cancer Center (ClinicalTrials.gov iden-
tifier NCT01471067). Preliminary data from this
ongoing trial, albeit in a more complex double CBT
and cancer therapy setting, show improved neutro-
phil and platelet engraftment in patients where the
second and smaller of the two CB units transplanted
was subject to ex vivo enforced fucosylation before
transplantation [39].

These findings suggest that because the use of ex
vivo enforced fucosylation as a means to improve the
proportion of fucosylated CB HSPCs is building on
an existing and therefore physiologically relevant mech-
anism, it is an effective strategy to pursue in the clinic.
However, it is unclear whether endogenously
fucosylated and non-fucosylated CB HSPCs are “quali-
tatively” identical or whether endogenous fucosylation
marks a “qualitative” difference between CB HSPCs.
If endogenously fucosylated and non-fucosylated CB
HSPCs are qualitatively identical, then non-fucosylated
CB HSPCs represent a good target for enforced
fucosylation with improved engraftment conferred on
an increased number of otherwise qualitatively iden-
tical HSPCs. However, if endogenous fucosylation
represents a qualitative difference between CB HSPCs,
then conferring engraftment on a majority of possi-
bly lower “quality” non-fucosylated HSPCs by enforced
fucosylation might inadvertently compromise engraft-
ment.This concern provided the rationale for this study.

Methods

Hematopoietic cells

Fresh CB units and animals were used under Univer-
sity ofTexas M.D.Anderson Cancer Center Institutional
Review Board and Institutional Animal Care and Use
Committee–approved protocols, respectively. Mono-
nuclear cells were isolated from eight fresh CB units
by Ficoll density separation and CD34+ cells en-
riched by magnetic-activated cell sorting (MACS)
(CD34 Reagent, Miltenyi Biotec). Pooled CD34+ cells
were stained with FITC-HECA-452 and APC-CD34
(BD Biosciences) for fluorescence-activated cell
sorting (FACS; Beckman Coulter MoFlo Astrios) and
CD34+HECA+ (fucosylated) and CD34+HECA– (non-
fucosylated) cells collected (Figure 1).

Human engraftment in the NSG mouse

NSG mice (n = 5 per group) were sublethally irradi-
ated (3 Gy, 137Cs source, 3 Gy/min, J. L. Shepherd and
Associates Mark I-25 Irradiator) and received 104

CD34+HECA+ (fucosylated), or 104 CD34+HECA–

(non-fucosylated) cells intravenously. Only 104 CD34+

cells were transplanted in an attempt to better accen-
tuate qualitative differences between the HECA+ and
HECA– groups. Human engraftment was deter-
mined in serial (twice weekly) 40-µL bleeds and in
BM and spleen (>12 weeks after transplant). PB, BM
and spleen were assessed for human and murine
CD45+ cells by flow cytometry (BD FACSCalibur)
using PE-rat anti-mouse CD45 and APC-mouse anti-
human CD45 (both BD Biosciences). Analysis was
performed using BD CellQuest Pro software.

The pattern of multi-tissue (PB, BM and spleen),
multi-lineage, human engraftment was determined:
myeloid (CD33, CD14, CD16),T-lymphocyte (CD3,
CD4, CD8), B-lymphocyte (CD19, CD20) and plate-
let (CD41a, CD61) (all antibodies from BD
Biosciences). Human platelets were identified by their
forward and side scatter profile (log-scale) and ex-
pression of human CD41a and CD61.

Phenotypic analyses of FACS isolated CD34+HECA+

(fucosylated) and CD34+HECA– (non-fucosylated)
fractions

FACS isolated CD34+HECA+ (fucosylated) and
CD34+HECA– (non-fucosylated) fractions were stained
with antibodies against CD133, CD90 (Thy-1),
CD117 (c-kit), BB9 (CD143), CD33, CD14, CD38,
CD3 and CD20 (all antibodies from BD Biosci-
ences) to determine whether phenotypic differences
between the two groups could be identified.

In addition, levels of HECA reactivity (fucosylation)
were measured for relatively more primitive (CD34+38–)
and relatively more mature (CD34+38+) subpopulations
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