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Abstract

Comparing the gene-expression profiles between biological conditions is useful for understanding gene
regulation underlying complex phenotypes. Along this line, analysis of differential co-expression (DC) has
gained attention in the recent years, where genes under one condition have different co-expression patterns
compared with another. We developed an R package Bayes Factor approach for Differential Co-expression
Analysis (BFDCA) for DC analysis. BFDCA is unique in integrating various aspects of DC patterns (including
Shift, Cross, and Re-wiring) into one uniform Bayes factor. We tested BFDCA using simulation data and
experimental data. Simulation results indicate that BFDCA outperforms existing methods in accuracy and
robustness of detecting DC pairs and DC modules. Results of using experimental data suggest that BFDCA
can cluster disease-related genes into functional DC subunits and estimate the regulatory impact of disease-
related genes well. BFDCA also achieves high accuracy in predicting case-control phenotypes by using
significant DC gene pairs as markers. BFDCA is publicly available at http://dx.doi.org/10.17632/jdz4vtvnm3.1.

© 2016 Elsevier Ltd. All rights reserved.

Introduction

To infer a set of genes associated with a particular
condition or phenotype, comparing gene-expression
profiles between different biological conditions or
phenotypes is a common approach [1,2]. The genes
that are found with significant differential expression
(DE) are often useful for understanding the gene
regulation underlying the complex phenotypes and
may serve as biomarker candidates. For the last
two decades, the analyses of gene-expression data
have been dominated by univariate-based methods,
which analyze expression data under the assump-
tion that genes are independent. However, such
methods may overlook the interactions and coordi-
nation among genes in performing their functions [3].
In particular, the small changes in multiple differen-
tially regulated genes may not be captured by single
gene test (e.g., ttest or ANOVA). This is especially
true for transcription factors, which are often stably
expressed at baseline levels [4] but have major
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causal regulatory effects in biological processes. For
example, myostatin (GDF8) was not a DE gene
between Piedmontese and Wagyu cattle, but it is a
differential hub gene in a DE network [5]. Another
example is the “switching mechanism”, where a
gene can be an activator or a suppressor depending
on another gene's activities under different condi-
tions. A well-known case is the Max gene, a tran-
scription factor, which activates transcription when it
heterodimerizes with Myc and represses transcrip-
tion when it heterodimerizes with Mad [6].

Due to the facts above, a promising approach of
differential co-expression (DC) analysis emerged in
the recent years. It seeks gene modules that are co-
expressed under one condition but have different
co-expression patterns in another condition. In addi-
tion to investigating gene-expression changes from
single genes independently, DC takes gene—gene
interactions into consideration and examines the
changes in gene correlations between different condi-
tions. Thus, DC can reveal the regulatory impact of a
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gene on other genes via identifying condition-specific
patterns in the context of regulatory relationships.
There are various scenarios of DC presented between
two genes, and three extreme cases are summa-
rized [3,7] as follows: (1) Shift, the correlation of
genes does not change between two conditions,
but expression values under one condition are
clearly different from those under the other (Fig. 1a);
(2) Cross, genes are positively correlated under
one condition but negatively correlated under the
other (Fig. 1b); (3) Re-wiring, genes are positively
(or negatively) correlated under one condition while
not correlated (or less correlated) under the other
(Fig. 1c). More complex changes in co-expression
patterns often occur, which, from a mathematical
perspective, can be represented as different
distributions of gene-expression profiles between
two potentially co-expressed genes under different
conditions.
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Several computational approaches have been de-
veloped for DC analysis. They can be divided into
two categories: targeted and untargeted approaches.
In targeted approaches, for example, Gene Set Co-
expression Analysis [8] and Gene Sets Net Correla-
tions Analysis [9], predefined gene sets are required
to test the correlation changes between conditions.
In untargeted approaches, no predefined gene sets
are required and gene modules are detected on
the basis of their DC profiles. Unlike targeted ap-
proaches, untargeted approaches are capable of
detecting novel modules. A group of untargeted
approaches aimed at detecting DC pairs, such as
EBcoexpress, an empirical Bayesian approach for
identifying DC gene pairs [10], and ROS-DET, a ro-
bust detector of switching mechanisms [11]. Another
group of untargeted approaches aimed at detecting
DC modules, such as DiffCoEx [12], which uses
the Weighted Gene Coexpression Network Analysis
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Fig. 1. Overview of the algorithm used by BFDCA. The input (left) is a set of gene-expression profiles from two classes
of samples. The algorithm performs the following: (1) estimating the DC of gene pairs by calculating Bayes factors,
(2) filtering DC edges whose Bayes factor values are too small; (3) inferring DC modules using the remaining edges,
(4) assigning each DC with a weight to reflect its regulatory importance, (5) selecting significant DC gene pairs according
to their end-node importance and edge values. (a—c) represent shift, cross, and re-wiring scenarios of differentially
co-expressed gene pair. x-axis and y-axis represent the gene-expression levels of gene X and gene Y, respectively. Dots
in different colors and shapes represent samples under two different conditions. Taken together, these scenarios can be
interpreted as different distributions of gene-expression profiles between two potentially co-expressed genes under

different conditions.
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