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Abstract

Globular proteins typically fold into tightly packed arrays of regular secondary structures. We developed a
model to approximate the compact parallel and antiparallel arrangement of a-helices and [-strands,
enumerated all possible topologies formed by up to five secondary structural elements (SSEs), searched for
their occurrence in spatial structures of proteins, and documented their frequencies of occurrence in the PDB.
The enumeration model grows larger super-secondary structure patterns (SSPs) by combining pairs of
smaller patterns, a process that approximates a potential path of protein fold evolution. The most prevalent
SSPs are typically present in superfolds such as the Rossmann-like fold, the ferredoxin-like fold, and the
Greek key motif, whereas the less frequent SSPs often possess uncommon structure features such as split
B-sheets, left-handed connections, and crossing loops. This complete SSP enumeration model, for the first
time, allows us to investigate which theoretically possible SSPs are not observed in available protein
structures. All SSPs with up to four SSEs occurred in proteins. However, among the SSPs with five SSEs,
approximately 20% (218) are absent from existing folds. Of these unobserved SSPs, 80% contain two or more
uncommon structure features. To facilitate future efforts in protein structure classification, engineering, and
design, we provide the resulting patterns and their frequency of occurrence in proteins at: http://prodata.
swmed.edu/ssps/.

© 2016 Published by Elsevier Ltd.

Introduction

The topological connectivity and arrangement of
secondary structure elements (SSEs) in three-
dimensional (3D) space define protein folds. Identify-
ing and enumerating common substructure motifs
within folds, such as the helix-turn-helix [1], the Baf
[2], and the Greek key [3,4], have aided in predicting
protein structure [5-9] and function [1,10,11] and in
understanding fold evolution [12,13]. These named
substructures represent different super-secondary
structure patterns (SSPs) that encompass two or
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more closely packed SSEs. SSPs can be defined by
the order, connection topology, orientation, and
packing of SSEs.

The knowledge of SSP composition within folds
helps us understand the structural and evolutionary
relationships among proteins. Previous studies have
revealed a number of frequently recurring SSPs
within diverse folds, such as the Rossmann fold [14],
the B-grasp [15], and the Greek key [3,16], and have
established the value of using these common SSPs
to outline structural relationships among large
families. Databases such as CATH [17] and SCOP
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[18] have provided large-scale classification of
protein structures according to these relationships.
For instance, SCOP describes folds by conserved
combinations of SSEs in the common structure core.
The SSPs that occur with high frequency con-
firmed some basic rules of protein folding. For
example, an investigation of crossover connections
in B-sheets highlighted a strong preference for
right-handedness in Ba units [19], while enumera-
tion of B-sheet structures detected the absence of
sheets with order 3142 or 2413, known as the
“pretzels” [20]. Distributions of open B-sheets have
suggested a preference for a lower number of
B-strand pairs adjacent in sequence but separated
in the B-sheet, that is, “jumps” [6]. Recently, the
ability of these rules to dictate the probability of SSP
occurrence in two-layer architectures (i.e., consisting
of two planes) was evaluated, helping explain the
limited number of SSE arrangements seen in protein
structures [21]. These rules can also aid in protein
engineering and design. For example, fundamental
rules such as chirality and orientation preference of
SSPs, along with additional rules such as the angle
between SSEs and loop length, were used to
successfully guide the design of ideal proteins [22].
We denote the set of all SSPs composed of n SSEs
as Sn; for instance, S3 consists of all SSPs with three
SSEs. Numerous small domains or protein fragments,
corresponding to SSPs consisting of two (S2) or
three (S3) SSEs, are present in the PDB, and the
knowledge of their local interactions guides structure
prediction. One popular hypothesis suggests that
stable SSPs serve as folding nuclei [23—26]. Accord-
ingly, correctly recognizing such core SSPs may help
ab initio structure prediction. Hidden Markov models
for predicting SSP 3D context have been used to aid
local structure prediction when a template is not
available [27]. In CASP5, the FRAGFOLD server
obtained the most accurate models for two new fold
targets by assembling SSPs using a simulated
annealing algorithm [9]. SSP classification has also
helped loop modeling. A library of small SSPs
consisting of two SSEs linked by a loop, called SMotif
[28], has been used to reduce the loop search space
by selecting both the candidate loop fragments that
match loop length and also the “bracing SSEs” that
bound the loop and meet geometrical requirements
[29]. Recently, SMotif [28] and chemical shift informa-
tion were combined to model larger structures [8].
Several theoretical models have been proposed to
enumerate SSPs in protein folds. Owing to the
difficulty of complete enumeration due to the very
large number of possible SSPs, many of these
models restrict their scope to various protein fold
subsets. Early models describe a-helices packing
onto B-sheets in a small subset of a/B folds [30],
-strand orientations in packed B-sheets [31,32], and
a-helical arrangements in globular proteins [33].
Enumeration of B-strand arrangements in open

B-sheets is widely studied [3,6,20,34]. For instance,
a systematic analysis of topology preference for four-
stranded B-sheet patterns found that 42 out of 96
possible topologies were identified in protein struc-
tures, and 50% of these structures were covered by
only four topologies [34]. SSPs in B-sandwich
structures have also been thoroughly investigated
[35—40]. A comprehensive survey of Greek key motifs
among B-barrels and B-sandwiches suggested basic
rules that reflect their topological constraints and
preferences [35]. Recently, models describing
B-strand arrangements in B-sandwich structures
have identified a characteristic feature among existing
structures, termed “interlock”, and used it as a rule to
distinguish and predict 3-sandwiches [38—40]. Using
such rules drawn from the analysis of recurring SSPs
in proteins, Efimov proposed a method that models
fold growth through stepwise addition of one SSE to a
root structure pattern [41]. With this method, Efimov
outlined possible folding pathways for five protein
superfamilies of diverse folds.

We propose a more general theoretical model of
fold growth by generating all possible up-and-down,
compact SSPs built on a hexagonal lattice. Here,
up-and-down refers to the antiparallel orientation of
the successive (as dictated by the sequence) SSEs in
an SSP. Compactness broadly requires that we form
tight clusters without holes in the middle of the SSP or
concavities along the contour (periphery); particularly,
when an SSE is added to an SSP (with at least two
SSEs) to obtain a larger SSP, the added SSE must be
adjacent to at least two of the SSEs of the SSP in the
lattice. Within the definition of compactness, additional
rules for combining two SSPs that both consist of at
least two SSEs are detailed in the Appendix, along
with some additional exceptions. Instead of growing
structures by the addition of a single SSE, we
extended Efimov's idea by treating larger SSPs as
the combination of two smaller ones, that is, structural
tree construction [41], where a new SSP was built by
adding an additional SSE to the root SSP. However,
Efimov's root SSP was predefined with certain
common patterns. For example, all- structure enu-
meration was limited to SSPs containing a specific
root composed of only B-strands, and the o/ structure
enumeration was confined to SSPs containing a Baf
unit. Moreover, Efimov used certain strict rules to
guide the SSE addition so that the resulting SSP was
much more likely to occur in the protein database.
Compared with Efimov's work, our enumeration
initiates from elementary SSEs (i.e., B-strand and
a-helix) and grows without preference for handedness
or connection type. Thus, our SSPs are more
comprehensive and enable the identification of rare
and unobserved SSPs in proteins. This idea of
growing a larger SSP by combining smaller ones is
a likely path of protein origin in nature [12,50,51].

Our model builds upon the basic root SSPs (helix—
helix, strand—strand, helix-strand, and strand-helix),
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