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A B S T R A C T

Genome-wide association studies (GWAS) have been successfully applied in identifying single nucleotide
polymorphisms (SNPs) associated with body mass index (BMI) and coronary heart disease (CAD). However, the
SNPs to date can only explain a small percentage of the genetic variances of traits. Here, we applied a genetic
pleiotropic conditional false discovery rate (cFDR) method that combines summary statistic p values from dif-
ferent multi-center GWAS datasets, to detect common genetic variants associated with these two traits. The
enrichment of SNPs associated with BMI and CAD was assessed by conditional Q-Q plots and the common
variants were identified by the cFDR method. By applying the cFDR level of 0.05, 7 variants were identified to be
associated with CAD (2 variants being novel), 34 variants associated with BMI (11 variants being novel), and 3
variants associated with both BMI and CAD (2 variants being novel). The SNP rs653178 (ATXN2) is noteworthy
as this variant was replicated in an independent analysis. SNP rs12411886 (CNNM2) and rs794356 (HIP1) were
of note as the annotated genes may be associated with processes that are functionally important in lipid me-
tabolism. In conclusion, the cFDR method identified novel variants associated with BMI and/or CAD by effec-
tively incorporating different GWAS datasets.

1. Introduction

Epidemiological studies have estimated that the prevalence of
overweight/obesity increased by approximately 41% between 1980
and 2013, making it a major contributor to the rise in coronary heart
disease (CAD) [1]. CAD is one of the leading causes of morbidity and
mortality worldwide [1]. Risk factors, particularly obesity, have al-
ready had well-established associations with CAD [2].

Epidemiological studies supported that obesity is an independent
predictor of clinical CAD [3]. A previous study has demonstrated that
every 1 kg/m2 increase in body mass index (BMI) leads to a 5–7% in-
crease in the incidence of CAD across all BMI categories [4], supporting
an inverse relationship between obesity (measured, as conventional, by
high BMI) and risk of CAD. Similarly, a large meta-analysis showed that
obese participants had a significantly greater risk of CAD (relative risk –
RR 1.81, 95% confidence interval – CI 1.56–2.10) after the adjustment
for age, sex, physical activities, and smoking [5]. Additional

adjustments based on blood pressure and cholesterol levels reduced the
RR of obesity to 1.49 (1.32–1.67), but the obesity impact still remained
statistically significant. Despite the association between high BMI with
an increased occurrence of CAD, studies have also reported the obesity
paradox phenomenon that obese patients with established CAD have
better clinical outcomes as compared with normal weight patients [6].
Accumulative molecular evidence suggested that obesity might directly
be involved in the pathogenesis of CAD [7]. For example, accumulation
of body fat could lead to classic metabolic abnormalities [8], including
insulin resistance, hyperinsulinemia, hypercholesterolemia, and im-
paired glucose tolerance, all of which combined would further increase
the likelihood of development into CAD [9].

Heritability (h2) studies demonstrate a substantial genetic con-
tribution to obesity risk (h2 ~ 40–70%) [10] and CAD (male twins:
h2 ~ 45–69% and female twins: h2 ~ 26–50%) [11]. However, the
identified genes to date only can explain a small percentage of the
variances of BMI and CAD [10,11]. Considering the high degree of
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heritability in obesity and CAD, more efforts are needed to improve the
detection of additional variants that may underlie the “missing herit-
ability”. GWAS have the potential to explain a larger proportion of the
heritability, mainly by using enlarged larger sample sizes [12]. How-
ever, the additional statistical power gained per subject by increasing
recruitments of additional study subjects is limited [13], cost-effective
analytical methods are therefore needed to fully utilize the existing
GWAS datasets. Such methods have recently been developed and suc-
cessfully applied, including meta-CCA method [13], Genetic analysis
incorporating Pleiotropy and Annotation (GPA) method [14], the
method by Zhu X and coworkers [15].

The pleiotropic effect is defined as a single gene or variant being
associated with more than two distinct phenotypes [16]. Evidence in-
dicated that pleiotropic effect exists in BMI and CAD, which suggests
that they may share common genetic variants [17]. By combining the
independent GWAS from associated trait and disease of BMI and CAD,
the samples sizes are effectively enlarged for detection of the pleio-
tropic genes [18,19]. Based on pleiotropic effect, statistical power and
detection of shared variants will be highly improved by leveraging
multi-center GWAS datasets of BMI and CAD.

Recently, a pleiotropy-informed cFDR method is developed with the
aim to identify some of the missing heritability [20] with GWAS on
individual traits/diseases. So far this method has been successfully
applied, e.g., in schizophrenia and cardiovascular disease risk factors
[20], and blood pressure and other phenotypes [21] by other groups,
and by our own group for height and femoral neck bone mineral density
[22], type 2 diabetes and birth weight [23], and for CAD and bone
mineral density [24]. This method thus theoretically (21) and practi-
cally have been shown to have improved the statistical power and
improved variants discovery in the studied associated traits or diseases.
Here, we applied the genetic pleiotropy-informed cFDR method on
summary statistics of two independent meta-GWAS to identify shared
variants and pleiotropic effect between BMI and CAD. By using this
method, we hypothesized that we could identify more common variants
for BMI and/or CAD, and discover some novel etiologic relationship
between BMI and CAD.

2. Materials and methods

2.1. GWAS datasets

The dataset for BMI was downloaded from http://portals.
broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_
data_files. This GWAS meta-analysis compromising of 249,796 in-
dividuals of white European Ancestry was performed by the Genetic
Investigation of Anthropometric Traits (GIANT) Consortium [19]. Two
datasets for CAD were downloaded from http://www.
cardiogramplusc4d.org/data-downloads. The C4D dataset performed
by the Coronary Artery Disease (C4D) Genetics Consortium was derived
from a meta-analysis of four large GWAS of European and South Asian
descent involving 15,420 CAD cases and 15,062 controls [25]. The
second dataset conducted by the transatlantic Coronary ARtery Disease
Genome-wide Replication and Meta-analysis (CARDIoGRAM) Con-
sortium was derived from a meta-analysis of 22 GWAS of European
descent comprising of 22,233 cases and 64,762 controls [18]. All the
datasets consist of summary statistics for each SNP based on each meta-
analysis publication, providing p values after using genomic control
(GC) both at the individual study level and after meta-analysis [26].
Further details of the GWAS samples and methods employed within
each group were presented in the original references [18,19,25]. Ad-
ditionally, the CARDIoGRAM dataset for CAD in our analysis was used
as the replication dataset. This study used only summary statistics from
publically available datasets for previous GWAS. It does not involve
human subjects directly. Informed consent was obtained from all par-
ticipants of contributing studies in the published respective GWAS.
Contributing studies received ethical approval from their respective

institutional review boards. This study was approved by the Ethical
Committee of the Life Sciences of Zhengzhou University.

2.2. Data preparation

Before the analysis, we checked whether there were overlapped
samples included in these datasets of the cohorts. We found no in-
dividuals were overlapped between C4D and GIANT datasets, and no
overlapped individuals between CARDIoGRAM and C4D datasets.
However, the datasets used for BMI and CAD had different ancestors,
i.e., European Ancestry for BMI and Europeans and South Asians for
CAD (45% of the CAD case are Asians).

When dealing with the various datasets, we combined the two
phenotypes' summary p values for the common SNPs studied in both
datasets. After annotating the common SNPs, we applied a LD-based
pruning method to remove the large correlations between pairs of
variants. The minor allele frequency (MAF) was used as a criterion in
the SNP pruning method, which removed the SNP with smaller MAF for
pairs with R2 > 0.2. The datasets were pruned using the HapMap3
genotypes of the corresponding matched ethnicity references. First, this
method proceeds by using 50 SNPs as a group where LD is calculated
between each pair of SNPs. SNPs with smaller MAF were removed from
our analysis if their measured LD had an R2> 0.2. Then, move forward
by 5 SNPs and the process is repeated until there are no pairs of SNPs
that are> 0.2. This pruning method ensures that SNPs are not in LD
with each other in the follow-up analysis. It is suggested that complex
correlations among the test-statistics may bias the estimate of the
conditional FDR, including LD score regression [27] and the effect of
correlation in FDR estimation [28]. There are two regions with complex
LD structures [29], including the extended major histocompatibility
complex (MHC) (chr6:25652429–33368333) and chromosomal region
8p23.1 (chr8:7242715–12483982). Thus, we constructed conditional
Q-Q plots and the cFDR analysis after excluding SNPs within these re-
gions to remove potential bias introduced by them.

2.3. Statistical analysis

2.3.1. Genomic control (GC)
Population stratification can be a problem for association studies,

where the association could be found due to the underlying structure of
the population and not a disease associated locus. GC is one of the most
widely used approaches to correct for this problem, which controls the
inflation of test statistics due to population structures [30]. GC works
by using markers that are not linked with the trait in question to correct
for any inflation of the test statistic caused by population stratification
[26]. GC has been applied in the original GWAS at the individual study
level and for the meta-analysis, there is no need for us to repeat it here
in our analyses.

2.3.2. Conditional Q-Q plots for accessing pleiotropic effect enrichment
Q-Q plots are a descriptive tool for visualizing the difference be-

tween observed distribution and theoretical distribution. In the analysis
of GWAS, quantiles of the observed p-values (nominal), denoted by ‘p’,
are plotted on the y-axis, and quantiles of the theoretical null dis-
tribution (the uniform distribution estimated by the empirical cumu-
lative distribution function), here denoted by ‘q’, are plotted on the x-
axis. Commonly, the negative log transformation was used, we denoted
the y-axis as nominal − log10 (p), and the x-axis as empirical − log10
(q). The enrichment of pleiotropic effect is graphically accessed by
conditional Q-Q plots [20]. Under the null hypothesis, enrichment of
pleiotropic effect can be reflected by leftward deflections of the ob-
served distribution from the null line. If the Q-Q plot falls on the line
x = y, with no deviation between lines, this would indicate no en-
richment of genetic pleiotropic effect. If pleiotropic enrichment does
exist, an earlier leftward shift from the null line will be present. Larger
spacing in the Q-Q plots is interpreted as a greater extent of pleiotropic
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