

Contents lists available at ScienceDirect

Molecular and Cellular Endocrinology

journal homepage: www.elsevier.com/locate/mce

Early transcriptome responses of the bovine midcycle corpus luteum to prostaglandin F2 α includes cytokine signaling

Heather Talbott ^{a, b}, Xiaoying Hou ^a, Fang Qiu ^c, Pan Zhang ^a, Chittibabu Guda ^d, Fang Yu ^c, Robert A. Cushman ^e, Jennifer R. Wood ^f, Cheng Wang ^a, Andrea S. Cupp ^f, John S. Davis ^{a, b, g, *}

^a Olson Center for Women's Health/Obstetrics and Gynecology Department, University of Nebraska Medical Center, 989450 Nebraska Medical Center, Omaha, NE 68198-9450, USA

^b Biochemistry and Molecular Biology Department, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198-5870, USA ^c Biostatistics Department, University of Nebraska Medical Center, 984375 Nebraska Medical Center, Omaha, NE 68198-4375, USA

^d Department of Genetics, Cell Biology and Anatomy, Bioinformatics and Systems Biology Core, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE 68198-5805, USA

^e Nutrition and Environmental Management Research Unit, United States Department of Agriculture, P.O. Box 166 (State Spur 18D)/USDA-ARS-PA-USMARC, Clay Center, NE 68933, USA

^f Animal Science Department, University of Nebraska—Lincoln, P.O. Box 830908, C203 ANSC, Lincoln, NE 68583-0908, USA

^g Veterans Affairs Medical Center, 4101 Woolworth Ave, Omaha, NE 68105, USA

ARTICLE INFO

Article history: Received 13 March 2017 Received in revised form 17 May 2017 Accepted 18 May 2017 Available online 23 May 2017

Keywords: Corpus luteum PGF2a Regression Cytokine Signaling Luteolysis

ABSTRACT

In ruminants, prostaglandin F2alpha (PGF2 α)-mediated luteolysis is essential prior to estrous cycle resumption, and is a target for improving fertility. To deduce early PGF2 α -provoked changes in the corpus luteum a short time-course (0.5–4 h) was performed on cows at midcycle. A microarray-determined transcriptome was established and examined by bioinformatic pathway analysis. Classic PGF2 α effects were evident by changes in early response genes (FOS, JUN, ATF3) and prediction of active pathways (PKC, MAPK). Several cytokine transcripts were elevated and NF- κ B and STAT activation were predicted by pathway analysis. Self-organizing map analysis grouped differentially expressed transcripts into ten mRNA expression patterns indicative of temporal signaling cascades. Comparison with two analogous datasets revealed a conserved group of 124 transcripts similarly altered by PGF2 α treatment, which both, directly and indirectly, indicated cytokine activation. Elevated levels of cytokine transcripts after PGF2 α -mediated luteolysis.

Published by Elsevier Ireland Ltd.

1. Introduction

In mammals, multiple fertile cycles depend on the formation and regression of a transient endocrine structure in the ovary termed the corpus luteum (CL) (Meidan, 2017). The CL forms during each estrous cycle and synthesizes progesterone, a hormone critical for early embryonic survival during pregnancy (Micks et al., 2015; Spencer et al., 2016). However, before the next follicle can develop, the steroidogenic luteal cells of the CL must cease progesterone production—contingent on the absence of a pregnancy—and ultimately undergo apoptosis (Aboelenain et al., 2015; Del Canto et al., 2007). Prostaglandin F2alpha (PGF2 α) is a recognized lipid mediator that triggers luteal regression after an unsuccessful reproductive cycle or at parturition in mammals (Davis and Rueda, 2002). Thus, PGF2 α -mediated luteolysis is a key checkpoint in the reproductive cycle and is a useful target for controlling the estrous cycle and fertility.

Signaling by PGF2 α has been studied extensively *in vitro*, and the classic signaling pathway involves the binding of PGF2 α to its G-protein coupled receptor and activating $G\alpha_{\alpha/11}$ (McCann and Flint,

^{*} Corresponding author. Olson Center for Women's Health, University of Nebraska Medical Center, 983255 Nebraska Medical Center, Omaha, NE 68198-3255, USA.

E-mail addresses: heather.talbott@unmc.edu (H. Talbott), xhou@unmc.edu (X. Hou), fqiu@unmc.edu (F. Qiu), pan.zhang@unmc.edu (P. Zhang), babu.guda@unmc.edu (C. Guda), fangyu@unmc.edu (F. Yu), bob.cushman@ars.usda.gov (R.A. Cushman), jwood5@unl.edu (J.R. Wood), chengwang@unmc.edu (C. Wang), acupp2@unl.edu (A.S. Cupp), jsdavis@unmc.edu (J.S. Davis).

A 1.	1	
An	nreviatio	nc
110	Dicviatio	1.3

Protein/Gene

	Flotelli/Gene		
	ABCA1	ATP binding cassette subfamily A member 1	
	ABCG1	ATP binding cassette subfamily G member 1	
	APOA1	apolipoprotein A1	
	APOE	apolipoprotein E	
	ATF3/ATF3 activating transcription factor 3		
	CCL/CCL	C-C motif chemokine	
	CH25H/CH25H cholesterol 25-hydroxylase		
	CL	corpus luteum	
	CYP11A1	cytochrome P450 family 11 subfamily A member 1	
	EDN1	endothelin 1	
	EGR/EGR	early growth response protein 1/3/4	
	ERK	extracellular signal-regulated kinase	
	FOS/FOS	Finkel-Biskis-Jinkins murine osteosarcoma viral	
		oncogene homolog	
	GEO	Gene Expression Omnibus	
	HEPES	4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid	
	HSD3B1	hydroxyl- δ -5-steroid dehydrogenase, 3 β and steroid δ	
		isomerase 1	
	HSL/LIPE	Hormone sensitive lipase, type E	
	IL-/IL	interleukin	
INSIG1/INSIG1 insulin induced gene 1			
	IPA	Ingenuity Pathway Analysis	

JUN/JUN	Jun proto-oncogene
LDLR	low density lipoprotein receptor
LDLRAP1	<i>[LDLRAP1 low density lipoprotein receptor adaptor</i>
	protein 1
LHCGR	Luteinizing hormone/chorionic gonadotropin receptor
LLC	large luteal cells
MAPK	mitogen-activated protein kinase
mRNA	messenger RNA
NF-κB/N	FKB1 nuclear factor kappa B
NR1H	nuclear receptor family 1 subfamily H member 2/3
NR4A/NF	R4A nuclear receptor subfamily 4 group A member 1/2/
	3
PGF2a	prostaglandin F2alpha
PKC/PKC	D protein kinase C
qPCR	quantitative real-time PCR
RMA	robust multi-array average
SCARB1	scavenger receptor class B member 1
SEM	standard error of the mean
SLC	small luteal cells
SOM	self-organizing map
StAR/StA	<i>R</i> steroidogenic acute regulatory protein
STAT	signal transducer and activator of transcription 1/3
TGFβ/TG	FB transforming growth factor beta 1/2
TNFa/TN	F tumor necrosis factor alpha
USF1	upstream transcription factor 1
VEGF	vascular endothelial growth factor A

1993; Väänänen et al., 1998). The early intracellular signaling events initiated by PGF2a in luteal cells include the activation of phospholipase C (Davis et al., 1987), phospholipase A2 (Kurusu et al., 2012, 1998), an increase in intracellular Ca²⁺ (Davis et al., 1987), activation of protein kinase C (PKC) (Chen et al., 2001) and activation of mitogen-activated protein kinase (MAPK) signaling cascades including extracellular signal-regulated kinase (ERK) (Arvisais et al., 2010; Chen et al., 2001, 1998; Yadav and Medhamurthy, 2006). These signaling cascades are responsible for the induction of several early response genes including, Finkel-Biskis-Jinkins murine osteosarcoma viral oncogene homolog (FOS) (Chen et al., 2001), Jun proto-oncogene (JUN) (Chen et al., 2001), early growth response 1 (EGR1) (Hou et al., 2008), and activating transcription factor 3 (ATF3) (Mao et al., 2013). These initial alterations will trigger changes in the CL proteome enabling luteolysis to proceed. For example, EGR1 expression stimulates the synthesis of transforming growth factor beta (TGF β) (Hou et al., 2008), which can inhibit luteal progesterone secretion (Hou et al., 2008), act on luteal endothelial cells to disrupt the microvasculature (Maroni and Davis, 2011), and stimulate the profibrotic activity of luteal fibroblasts (Maroni and Davis, 2012).

The luteolytic process is a well-coordinated series of events similar to an acute inflammatory response consisting of a sequential time-dependent infiltration of neutrophils, macrophages, and T lymphocytes (Best et al., 1996; Penny et al., 1999). Accordingly, there is likely time-dependent secretion of cytokines to recruit and activate the various leukocytes (Townson and Liptak, 2003). Several cytokine transcripts are induced by PGF2 α in the mid-to late-stage CL including tumor necrosis factor alpha (*TNF*) (Shah et al., 2014), interleukin 1 beta (*IL1B*) (Atli et al., 2012; Mondal et al., 2011), *TGFB1* (Hou et al., 2008; Mondal et al., 2011; Shah et al., 2014), and the chemokines; C-C motif chemokine ligand 2 (*CCL2*, previously known as *MCP1*) (Mondal et al., 2011; Penny et al., 1998) and C-X-C motif 8 (*CXCL8*, previously known as *IL8*) (Atli et al., 2012; Mondal

et al., 2011; Shah et al., 2014; Shirasuna et al., 2012b; Talbott et al., 2014). These cytokines have pleiotropic effects on luteal cells, including inhibition of progesterone secretion, stimulation of PGF2 α secretion, and stimulation of apoptosis of multiple luteal cell types (Pate et al., 2010). The production of luteolytic factors, decrease in progesterone secretion, recruitment of immune cells, release of pro-inflammatory cytokines, reduction in blood supply (Shirasuna, 2010), and the creation of a hypoxic environment (Nishimura and Okuda, 2015) likely act in concert within the CL to cause the functional and structural regression of the CL.

The purpose of this study was to understand the early PGF2 α elicited changes in the CL based on temporal patterns of early transcript expression following in vivo treatment with PGF2a. While many studies have examined luteolytic alterations both in vivo and in vitro, most studies have focused on changes 3-24 h after PGF2 α administration (Mondal et al., 2011; Shah et al., 2014) or used targeted rather than global approaches (Atli et al., 2012; Shirasuna et al., 2012a, 2010). Therefore, little is known about the very early temporal changes in global mRNA expression elicited in response to PGF2a treatment in vivo. In the present study, a systems biology approach using Affymetrix Bovine microarray was employed to evaluate gene expression at 0.5-4 h after PGF2 α ; followed by bioinformatics analysis of PGF2a-mediated signals. We hypothesized that the sequence of events after in vivo PGF2a administration would include early changes of classical targets of PGF2a signaling pathways followed by fluctuations in targets of cytokine signaling at later times.

2. Materials and methods

2.1. Animals

Postpubertal multiparous female cattle (n = 15) of composite breeding ($\frac{1}{2}$ Red Angus, Pinzgauer, Red Poll, Hereford and $\frac{1}{2}$ Red

Download English Version:

https://daneshyari.com/en/article/5534036

Download Persian Version:

https://daneshyari.com/article/5534036

Daneshyari.com