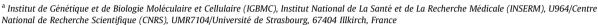


Contents lists available at ScienceDirect

Molecular and Cellular Endocrinology


journal homepage: www.elsevier.com/locate/mce

CrossMark

Structural aspects of Vitamin D endocrinology

Natacha Rochel a, *, Ferdinand Molnár b, **

b Institute of Biopharmacy, School of Pharmacy, Faculty of Heath Science, University of Eastern Finland, Yliopistonranta 1C, Canthia 2036, 70210 Kuopio, Finland

ARTICLE INFO

Article history:
Received 22 December 2016
Received in revised form
27 February 2017
Accepted 27 February 2017
Available online 28 February 2017

Keywords: Vitamin D3 DBP CYPs VDR HVDRR Structure Allostery

ABSTRACT

 1α ,25-Dihydroxvitamin D₃ (1,25(OH)₂D₃) is the hormonally active form of vitamin D₃. Its synthesis and its metabolites, their transport and elimination as well as action on transcriptional regulation involves the harmonic cooperation of diverse proteins with vitamin D binding capacities such as vitamin D binding protein (DBP), cytochrome P450 enzymes or the nuclear vitamin receptor (VDR). The genomic mechanism of $1,25(OH)_2D_3$ action involves its binding to VDR that functionally acts as a heterodimer with retinoid X receptor. The crystal structures of the most important proteins for vitamin D₃, VDR, DBP, CYP2R1 and CYP24A1, have provided identification of mechanisms of actions of these proteins and those mediating VDR-regulated transcription. This review will present the structural information on recognition of the vitamin D₃ and metabolites by CYP proteins and DBP as well as the structural basis of VDR activation by $1,25(OH)_2D_3$ and metabolites. Additionally, we will describe, the implications of the VDR mutants associated with hereditary vitamin D-resistant rickets (HVDRR) that display impaired function.

1. Introduction

The active form of vitamin D_3 , 1α ,25-Dihydroxyvitamin D_3 (1,25(OH)₂ D_3), acts as an endocrine hormone and primarily maintains calcium levels in plasma and phosphate homeostasis. In addition to endocrine hormone actions, locally produced 1,25(OH)₂ D_3 displays paracrine/autocrine actions (Morris and Anderson, 2010) that are important for epidermal differentiation (Bikle *et al.*, 2004) or innate immune response (Liu *et al.*, 2006).

Vitamin D_3 can be obtained from dietary sources or is synthesized in the skin after sunlight exposure. The activation of vitamin D_3 is accomplished by sequential hydroxylations, 25-hydroxylation of vitamin D_3 leading to 25-hydroxyvitamin D_3 , 25(OH) D_3 , followed by the 1α -hydroxylation (Fig. 1). The first step of 25-hydroxylation occurs in the liver (Ponchon and DeLuca, 1969), and the second one occurs both in the kidney and extra-renal sites (Fraser and Kodicek, 1970; Hewison and Adams, 2011). Several cytochrome P450 enzymes, such as CYP2R1, CYP27A1, CYP3A4, CYP2D25, are able to

E-mail addresses: rochel@igbmc.fr (N. Rochel), ferdinandmolnar@gmail.com (F. Molnár).

hydroxylate at C-25. The second hydroxylation at C-1 α is done by CYP27B1 (Gray *et al.*, 1972).

Catabolic desactivation pathways include a carbon-24 oxidation by CYP24A1 leading to calcitroic acid production, and a 26,23-lactone pathway for converting both 25(OH)D₃ and 1,25(OH)₂D₃ to lactone products (Prosser and Jones, 2004). All of the CYPs that are involved in vitamin D hydroxylation, catalyze single or multiple hydroxylation reactions on specific carbons of the vitamin D₃ substrate using a transient heme-bound intermediate. All CYP proteins show high conservation and exhibit a common secondary structure with multiple highly conserved helices, A to L, connected by loops and β -sheet structures. Crystal structures of CYP2R1 (Strushkevich *et al.*, 2008) and CYP24A1 (Annalora *et al.*, 2010) provided insights into the vitamin D hydroxylation mechanism.

Vitamin D₃ metabolites including 1,25(OH)₂D₃ are transported by a serum vitamin D binding protein (DBP), also known as GC-globulin (Daiger *et al.*, 1975). DBP also binds saturated and unsaturated fatty acids with moderate affinity, monomeric actin and is able to depolymerize filamentous actin. The crystal structures of DBP bound to 25(OH)D₃ (Verboven *et al.*, 2002) as well as bound to actin (Otterbein *et al.*, 2002; Head *et al.*, 2002) were solved.

Most of the biological actions of 1,25(OH)₂D₃ are achieved through Vitamin D Nuclear Receptor (VDR)-mediated regulation of

^{*} Corresponding author.

^{**} Corresponding author.

Fig. 1. (A–B) Vitamin D₃ synthesis, activation and inactivation. (C) Chemical structure and numbering of 1,25(OH)₂D₃.

Download English Version:

https://daneshyari.com/en/article/5534047

Download Persian Version:

https://daneshyari.com/article/5534047

<u>Daneshyari.com</u>