Molecular and Cellular Endocrinology 447 (2017) 61-70

Contents lists available at ScienceDirect

Molecular and Cellular Endocrinology

journal homepage: www.elsevier.com/locate/mce

Functional analysis reveals no transcriptional role for the glucocorticoid receptor β -isoform in zebrafish

Antonia Chatzopoulou, Peter J. Schoonheim, Vincenzo Torraca, Annemarie H. Meijer, Herman P. Spaink, Marcel J.M. Schaaf^{*}

Institute of Biology (IBL), Leiden University, Leiden, The Netherlands

ARTICLE INFO

Article history: Received 12 October 2016 Received in revised form 30 January 2017 Accepted 23 February 2017 Available online 24 February 2017

Keywords: Glucocorticoid receptor Beta-isoform Zebrafish Corticosteroid Microarray Transcriptome analysis

ABSTRACT

In humans, two splice variants of the glucocorticoid receptor (GR) exist: the canonical α -isoform, and the β -isoform, which has been shown to have a dominant-negative effect on hGR α . Previously, we have established the occurrence of a GR β -isoform in zebrafish, and in the present study we have investigated the functional role of the zebrafish GR β (zGR β). Reporter assays in COS-1 cells demonstrated a dominant-negative effect of zGR β but no such effect was observed in zebrafish PAC2 cells using induction of the *fk506 binding protein 5 (fkbp5)* gene as readout. Subsequently, we generated a transgenic fish line with inducible expression of zGR β . Transcriptome analysis suggested transcriptional regulation of genes by zGR β in this line, but further validation failed to confirm this role. Based on these results, its low expression level and its poor evolutionary conservation, we suggest that the zebrafish GR β -isoform does not have a functional role in transcriptional regulation.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The glucocorticoid receptor (GR) is expressed throughout the human body and regulates a wide variety of biological processes, like our metabolism, growth, reproduction, vascular tone, bone formation, immune response and brain function (Chrousos and Kino, 2005; de Kloet et al., 2005; Heitzer et al., 2007; Revollo and Cidlowski, 2009; Sapolsky et al., 2000; Schoneveld et al., 2004). The GR is activated upon binding to glucocorticoid (GC) ligands, and acts as a transcription factor, orchestrating gene expression via DNA-binding-dependent and -independent mechanisms (Beato and Klug, 2000, Buckingham, 2006; De Bosscher and Haegeman, 2009, Heitzer et al., 2007; Nicolaides et al., 2010; Schoneveld et al., 2004; van der Laan and Meijer, 2008). Cloning of the human GR gene revealed the occurrence of two splice variants, named as hGR α and hGR β , which derive from alternative usage of an acceptor splice site within the last coding exon (exon 9, see Suppl. Fig.1) (Encio and Detera-Wadleigh, 1991; Hollenberg et al., 1985). The GR α -isoform (777 amino acids) is able to interact with GCs, and represents the canonical receptor. The hGR β -isoform (742 amino acids) has a shorter LBD with a unique C-terminal 15 amino acid sequence, which renders it unable to respond to GCs (Encio and Detera-Wadleigh, 1991; Hollenberg et al., 1985; Kino et al., 2009a,b).

Almost ten years after the discovery of hGR β , it was shown using in vitro reporter assays that this isoform had a pronounced dominant-negative inhibitory effect on hGRa's transcriptional properties on GRE-containing promoters (Bamberger et al., 1995; Oakley et al., 1996, 1999). Moreover, hGRa-mediated repression of NF-kB activity in in vitro reporter assays was also reported to be inhibited by hGR β (Oakley et al., 1999). These findings were soon coupled to clinical data demonstrating a positive correlation between high expression levels of the β -isoform and GC resistance of patients suffering from immune-related disorders, like asthma (Christodoulopoulos et al., 2000; Goleva et al., 2006; Hamid et al., 1999; Hamilos et al., 2001; Leung et al., 1997; Sousa et al., 2000), ulcerative colitis (Fujishima et al., 2009; Orii et al., 2002; Zhang et al., 2005), leukemia (Koga et al., 2005; Longui et al., 2000; Shahidi et al., 1999) and rheumatoid arthritis (Derijk et al., 2001; Goecke and Guerrero, 2006). Further cell-based research has supported an inhibitory role for hGRβ on both hGRα-induced activation and repression of endogenous genes (MKP-1, myocilin, fibronectin, TNFα and IL6 (Goleva et al., 2006; Li, 2006; Zhang, 2005)), as well as on hGRa-mediated regulation of cell death, proliferation and

^{*} Corresponding author. Einsteinweg 55, 2333CC Leiden, The Netherlands. E-mail address: m.j.m.schaaf@biology.leidenuniv.nl (M.J.M. Schaaf).

phagocytosis (Hauk et al., 2002; Strickland et al., 2001; Zhang et al., 2007). Moreover, recent data support the notion that hGR β can have its own intrinsic transcriptional activity. Overexpression of zGR β has been demonstrated to attenuate NF- κ B and AP-1 induction of luciferase reporter constructs (Gougat et al., 2002), as well as GATA3-mediated activation of IL5 and IL13 promoters of luciferase genes (Kelly et al., 2008). Additionally, transcriptome analyses of cultured cells showed that hGR β can direct gene transcription independently of hGR α activation (Kino et al., 2009a,b; Lewis-Tuffin et al., 2007). In a recent study, overexpression of hGR β in the liver of mice showed both GR α -dependent and -independent regulation of gene expression by hGR β (He et al., 2016).

Despite the available data described above, the physiological relevance of hGR β is still under debate. First, in many studies the dominant-negative role of hGR β on hGR α 's transcriptional properties could not be confirmed (Bamberger et al., 1997; Brogan et al., 1999; Carlstedt-Duke, 1999; Gougat et al., 2002; Hecht et al., 1997; Kelly et al., 2008; Kim et al., 2009; Taniguchi et al., 2010). Second, hGRβ's expression levels are significantly lower compared to those of hGRα (Bamberger et al., 1995; de Castro et al., 1996; Oakley et al., 1996, 1997; Pujols et al., 2002; Strickland et al., 2001). This raises doubts about its in-vivo dominant-negative effect, since in most studies this required transfection of a 10-M excess of $hGR\beta$ expression vector compared to hGRa (Bamberger et al., 1995; Oakley et al., 1996, 1999). Third, the evolutionary conservation appears to be poor. Previously, we showed that the $GR\beta$ protein sequence is only conserved between primates, and that the gene organization required for $GR\beta$ expression is present in a limited group of placental mammals (Schaaf et al., 2008). For example, rodents, cats, dogs and hedgehogs contain a mutation in the splice acceptor site required for GR^β expression (Otto et al., 1997; Schaaf et al., 2008). As a result, until recently no animal model was available for functional studies on GRβ.

Remarkably, several years ago we discovered the occurrence of a GR β -isoform in zebrafish (Schaaf et al., 2008). Like its human equivalent, the zebrafish GR β -isoform differs from the α -isoform at the C-terminus and diverges from the GRa sequence at the same point as the human GR β . Both the human and zebrafish GR β -isoforms exhibit the same predominantly nuclear localization, and $zGR\beta$ also acts as a dominant-negative inhibitor of $zGR\alpha$ -mediated transactivation in in vitro reporter assays (Schaaf et al., 2008). However, differences exist between these GR β -isoforms, which demonstrates that they have evolved independently. First, the GRBspecific C-terminal sequences are very different between zebrafish and human GR β (Schaaf et al., 2008; Yudt et al., 2003). Second, in the human GR gene the $GR\beta$ -specific sequence is located in exon 9, whereas in the zebrafish GR gene it is found in the intronic sequence immediately downstream of exon 8 (Suppl. Fig.1). Thus, human and zebrafish GR^β mRNA are generated using different alternative splicing mechanisms (exon replacement and intron retention, respectively (van der Vaart and Schaaf, 2009)). A few years after our discovery of the zebrafish GR β , a GR β -isoform generated by intron retention was observed in mice as well, and this isoform appears to play a role in metabolic regulation (Hinds et al., 2010).

The scope of this study was to investigate the role of $zGR\beta$ in gene transcription either as a dominant-negative inhibitor of $zGR\alpha$ or as a transcription factor independent of $zGR\alpha$. We have utilized both *in vitro* and *in vivo* approaches. While a dominant-negative effect of $zGR\beta$ was observed in reporter assays in cultured cells, our data did not reveal any dominant-negative activity of $zGR\beta$ on endogenous genes in either cultured cells or zebrafish larvae. Furthermore, we found no convincing evidence for an intrinsic transcriptional activity of $zGR\beta$.

2. Materials and methods

2.1. Cell cultures

COS-1 cells were cultured in DMEM (Invitrogen), supplemented with 10% fetal bovine serum (Invitrogen) and 1% penicillin and streptomycin (Invitrogen). Cells were grown at 37 °C and 5% CO2. PAC2 zebrafish cells were cultured in Leibovitz's medium (Invitrogen), supplemented with 15% fetal bovine serum (Invitrogen) and 1% penicillin and streptomycin (Invitrogen). Cells were grown at 28 °C.

2.2. Luciferase reporter assays in COS-1 cells

COS-1 cells were seeded into 24-well plates (3×10^4 cells/well). Transfection was performed 24 h later using the TransIT[®]-COS Transfection Kit (Mirus Bio) according to the manufacturer's instructions. MMTV:luciferase reporter construct (200 ng) was transfected, with a range of PCS $+ zGR\alpha$ plasmid concentrations (1–300 ng) and/or 100 ng pCS2+zGRβ expression vector (Schaaf et al., 2008), together with 2 ng pCMV:renilla (Promega). In a second set of experiments, cells were transfected with 50 ng of a κB:luciferase reporter construct (Stratagene) and 50 ng of a human p65 expression vector (pCMV4-p65 (Ruben et al., 1991)), together with a range of pCS2+zGR α concentrations (0–1000 ng) in the presence and absence of 100 ng pCS2+zGR β . The total amount of transfected DNA was always kept equal among groups by transfecting empty pCS2+ vector. Twenty-four hours after transfection, cells were treated with 100 nM dexamethasone (Sigma) and 24 h later, they were assayed for luciferase activity using the Dual-Luciferase® Reporter Assay System (Promega). Bioluminescence was detected using a Wallac 1450 MicroBeta Luminometer. For each sample, the luciferase activity was normalized to the renilla activity. Per sample, measurements were performed in duplicate, and data shown are averages \pm s. e.m. of three experiments.

2.3. Gene expression analysis using the PAC2-zGR β cell line

The pCS2+zGR β plasmid (Schaaf et al., 2008) and a neomycin resistance plasmid were transfected into PAC2 zebrafish cells using the Amaxa[®] Cell line Nucleofector kit V and the NucleofectorTM II device (Lonza). Four days after transfection, cells were subjected to selection for antibiotic resistance by supplementing their culture medium with 500 µg/ml of geneticin (G418, Invitrogen). Resistant cells were propagated to establish the PAC2-zGR β cell line. For gene expression analysis, PAC2 wild type and PAC2-zGR β cells were seeded in 6-well plates (2 × 10⁵ cells/well) the day before treatment with 10 µM betamethasone 17-valerate (Sigma) or vehicle (2% DMSO) for 3 h. Samples were collected in TRIzol[®] reagent (Invitrogen).

2.4. RNA isolation & cDNA synthesis

Total RNA was extracted using the TRIzol[®] reagent (Invitrogen) according to the manufacturer's instructions. RNA was dissolved in water and denatured for 5 min at 60 °C. Samples were treated with DNase using the DNA-free™ kit (Ambion). For microarray analysis, RNA was further purified using the RNeasy MinEluteTM Cleanup kit from Qiagen and its integrity was checked with a lab-on-a-chip analysis using the 2100 Bioanalyzer (Agilent Technologies). For subsequent cDNA synthesis, at least 200 ng of total RNA was added as a template for reverse transcription using the iSCRIPTTM cDNA Synthesis Kit (Biorad).

Download English Version:

https://daneshyari.com/en/article/5534152

Download Persian Version:

https://daneshyari.com/article/5534152

Daneshyari.com