
Towards high dimensional instance selection: An evolutionary approach

Chih-Fong Tsai ⁎, Zong-Yao Chen
Department of Information Management, National Central University, Taiwan

a b s t r a c ta r t i c l e i n f o

Article history:
Received 28 March 2013
Received in revised form 23 December 2013
Accepted 28 January 2014
Available online 5 February 2014

Keywords:
Data reduction
Instance selection
Data mining
Machine learning
Genetic algorithms
High dimensional data

Data reduction is an important data pre-processing step in the KDD process. It can be approached by the applica-
tion of some instance selection algorithms to filter out unrepresentative or noisy data from a given (training)
dataset. However, the performance of instance selection over very high dimensional data has not yet been
fully examined. In this paper, we introduce a novel efficient genetic algorithm (EGA), which fits “biological
evolution” into the evolutionary process. In other words, after long-term evolution, individuals find the most
efficient way to allocate resources and evolve. The experimental study is based on four very high dimensional
datasets ranging from 200 to 18,236 dimensions. In addition, four state-of-the-art algorithms including IB3,
DROP3, ICF, and GA are compared with EGA. The experimental results show that EGA allows the k-NN and
SVM classifiers to provide the most comparable classification performance with the baseline classifiers without
instance selection. Particularly, EGA outperforms the four algorithms in terms of average classification accuracy.
Moreover, EGA can produce the largest reduction rates (the same as GA) and it requires relatively less computa-
tional time than the other four algorithms.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, the datasets collected for some specific domains tend
to be very large (containing a huge amount of data) and complex
(containing a very large number of variables or features), which leads
to the so-called ‘big data’ problem [17]. Consequently, data reduction,
as a data pre-processing task has became one of the most important
steps in data mining or knowledge discovery in databases (KDD).
Data reduction is aimed at shrinking the size of the collected dataset
to facilitate the later mining analysis step, i.e., model development.

In other words, if the chosen dataset contains too many instances
(i.e., data samples) it can result in large memory requirements, slow
execution speed, and over-sensitivity to noise. In addition, one problem
with using the original data points is that there may not be any located
at the precise points that wouldmake for themost accurate and concise
concept description [27].

To this end, instance selection can be utilized to filter out noisy (or
unrepresentative) data, which are likely to degrade the data mining
performance, from a given dataset [20,30]. The size of the dataset is
reducedwhen somenoisy data are removed by a specific instance selec-
tion algorithm. After this, data mining algorithms can be applied to the
reduced dataset, to achieve sufficient results if the selection strategy is
appropriate [28].

Let us now discuss instance selection. Given a dataset D composed
of training set T and testing set U, let S ⊂ T be the subset of selected

instances resulting from the execution of an instance selection algo-
rithm. Then,U is used to test a classification technique trained by S [4,6].

A better algorithm can select better quality data from T, which in turn
would make the classifier trained by the reduced dataset S perform bet-
ter than one trained by T alone, or other reduced datasets containing
lower quality data produced by other algorithms. Thenumber of selected
instances in the reduced dataset (selected by a better (or effective) algo-
rithm) would not necessarily be smaller than the ones selected by other
algorithms. In other words, algorithms that produce larger reduction
rates are not necessarily effective because over selection may occur,
which would filter out many representative instances of T. Reduced
datasets containing many lower quality data can directly affect the
final classification accuracy.

There are a number of related studies proposing instance selection
methods for obtaining better mining quality in the literature. Specif-
ically, Pradhan and Wu [26] and Jankowski and Grochowski [16] sur-
veyed several relevant selection techniques, which can be divided
into three application-type groups: noise filters, condensation algo-
rithms, and prototype searching algorithms. In addition, Wilson and
Martinez [30] and Brighton and Mellish [3] conducted some com-
parative experiments. They found the Iterative Case Filtering (ICF)
and Decremental Reduction Optimization Procedure 3 (DROP3) to
be cutting-edge instance selection algorithms, which make the k-NN
classifier provide better performances over other instance selection
methods.

The genetic algorithms (GA), one of the most widely used tech-
niques for instance selection, have also been used to improve the per-
formance of data mining algorithms [6]. In particular, Cano et al. [4]

Decision Support Systems 61 (2014) 79–92

⁎ Corresponding author. Tel.: +886 3 422 7151; fax: +886 3 4254604.
E-mail address: cftsai@mgt.ncu.edu.tw (C.-F. Tsai).

0167-9236/$ – see front matter © 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.dss.2014.01.012

Contents lists available at ScienceDirect

Decision Support Systems

j ourna l homepage: www.e lsev ie r .com/ locate /dss

http://crossmark.crossref.org/dialog/?doi=10.1016/j.dss.2014.01.012&domain=pdf
http://dx.doi.org/10.1016/j.dss.2014.01.012
mailto:cftsai@mgt.ncu.edu.tw
http://dx.doi.org/10.1016/j.dss.2014.01.012
http://www.sciencedirect.com/science/journal/01679236


showed that better results can be obtained with a GA technique than
many traditional and non-evolutionary instance selection methods in
terms of better data reduction rates and higher classification accuracy.
Similarly, Nanni and Lumini [23] demonstrated the superiority of GA
over other instance selection methods, such as fuzzy clustering and
particle swarm optimization (PSO).

Recently, García et al. [12] conducted an extensive study of com-
paring fifty related instance selection algorithms including the above
mentioned algorithms over 58 different datasets. In these works, how-
ever, the performance of the instance selection algorithmswas assessed
using datasets from the UCI Machine Learning Repository1, where
the dimensionalities are very low, less than 100. However, many
real world problems contain very high dimensional data, composed
of several hundred to several thousands of features. For example,
the dataset for text classification will usually contain at least several
thousand to over ten thousand representative terms as features, while
image classification is based on several hundred low-level features,
such as color, texture, and/or shape features. A biological dataset can
contain thousands of genes coded for proteins and their locations in
various parts of the cells, and so on.

In other words, the major limitation of the afore-mentioned studies
is the lack of high dimensional data reduction. The mining performance
when performing instance selection over high dimensional datasets has
not been fully examined. In this study, four very high dimensional
datasets are used, with data dimensionalities of over 200.

GAs basically search for optimal solutions using generation succes-
sion. However, reproduction mechanisms, crossover, and mutation cal-
culation can cause optimal chromosomes to disappear over successive
generations, thereby making it impossible to fully use previous search
experience. Meanwhile, a lack of diversity in chromosome populations
produces premature convergence, which limits the search for a local
optimum. In addition, to reach the optimal solution, an exhaustive
search over the entire solution space must be carried out, which, for
many complex problems, is computationally intractable.

Therefore, in this paper, a novel instance selection method for high
dimensional data reduction, which we call the efficient genetic algo-
rithm (EGA), is introduced. This method is designed to minimize the
computational burden and improve the optimal solution, i.e., the
instance selection result. EGA simulates the biological evolutionary pro-
cess and natural rules where, after long-term evolution, individuals find
the most efficient way to allocate resources and evolve [2]. Inspired by
nature, EGA is constructed as an efficient and effective problem solving
method for instance selection.

The major contribution of this study is to introduce a novel
evolutionary-based instance selection algorithm, EGA. It is an extension
of the genetic algorithm based on biological evolution. Moreover, the
results of EGA assessment over high dimensional datasets are compared
with those from four well-known and representative instance selection
algorithms. The experimental results demonstrate that on average EGA
outperforms the chosen baseline instance selection methods, allowing
it to provide the highest classification accuracy, the least storage
requirement, and the lowest computational complexity.

The rest of this paper is organized as follows. Section 2 describes the
concept of GA and its application to instance selection. Section 3 intro-
duces the proposed EGA method for instance selection. In Section 4,
the experimental results, based on high dimensional datasets con-
taining various domain problems, are presented. Finally, conclusions
are given in Section 5.

2. Literature review

The main idea of the evolutionary algorithm (EA) is derived from
Darwin's theory of evolution or natural selection, of which the genetic

algorithm (GA) is one example [9,13]. The basic idea of a GA is that
you have a population of strings (called chromosomes), which encode
candidate solutions (called individuals) in an optimization problem.
In general, the genetic information (i.e., chromosome) is represented
by a bit string (such as binary strings of 0 s and 1 s) and sets of bits
encode the solution. Genetic operators are then applied to the indi-
viduals in the population for the next generation (i.e., a new population
of individuals). There are two main genetic operators: crossover and
mutation. Crossover creates two strings of offspring from two parent
strings by copying selected bits from each parent, whereas mutation
randomly changes the value of a single bit (with small probability).
In addition, a fitness function is used to measure the quality of an indi-
vidual in order to increase the probability that the single bit can survive
throughout the evolutionary process.

Basically, using GA for instance selection contains the following
steps [15]. First, as the initialization step, a number of individuals are
randomly generated, and the length of each individual is m, which is
the total number of the training set. Second, as the genetic operation
step, it follows the process of the original genetic algorithm, which
includes ‘selection’ (i.e. to randomly select a pair of strings from the
current population), ‘mating’ (i.e. to select a pair of strings to generate
two offspring) and ‘mutation’ (i.e. to randomly change the bit value
from 1 to 0 or from 0 to 1). Finally, as the termination step, in this
step, if a pre-specified stopping condition is not satisfied, the instance
selection process returns to the second step; otherwise the best string
with the largest fitness value is produced, where the reduced set is
determined. An example of performing GA for instance selection is
shown in Fig. 5.

3. The efficient genetic algorithm

3.1. The basic concept

While GAs have demonstrated success for a diverse set of problems,
they are only able to handle simple concepts. Basically, the idea is that if
resources are limited, the “individuals”will follow the most reasonable
and simplest rules — allowing for a more effective use of resources, or
“reproduction of species” [2,24]. By using simple rules, individuals that
maximize the “savings cost” will become more efficient. While reason-
able rules helpwith this approach, if we can fit the concept of “biological
evolution” into the evolutionary process, where the most streamlined
process also complies with reasonable rules, we can not only closely
simulate the natural evolution of an algorithm, but also the algorithm
will be both efficient and effective.

In other words, the algorithm only pursues the simplest evolu-
tionary process. While in general this is reasonable, as it is able to solve
problems fairly efficiently, a number of other elements are discarded
in the pursuit of efficiency in the evolutionary process. This could result
in a degradation of performance, and could also cause it to fall into the
local optimal solution. To avoid this problem, we introduce a novel
algorithm, called the efficient genetic algorithm (EGA).

In EGA, we use the individual/organism to represent a solution.
In particular, the individual is similar to a gene in GA or a particle in
particle swarm optimization (PSO). In addition, the ‘Kings’ repre-
sent the best group, containing the top K individuals from each
iteration. After the evaluation, EGA will randomly select/choose
some individuals for the mating pool. These individuals are able
to perform crossover and mutation processes and thus create new
individuals. Specifically, each iteration of EGA will generate a new
generation, which is composed of many individuals including the
Kings and other individuals. Migration is a mechanism which can
help EGA jump out from the local optima, just like the migration
of organisms.

A flow chart of the EGAprocess is shown in Fig. 1, inwhich thewhite
boxes represent the classical GA components and processes, and the
gray boxes indicate the additional processes and components of EGA.1 http://archive.ics.uci.edu/ml/.

80 C.-F. Tsai, Z.-Y. Chen / Decision Support Systems 61 (2014) 79–92

http://archive.ics.uci.edu/ml/)


Download English Version:

https://daneshyari.com/en/article/553456

Download Persian Version:

https://daneshyari.com/article/553456

Daneshyari.com

https://daneshyari.com/en/article/553456
https://daneshyari.com/article/553456
https://daneshyari.com

