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The classic multiple-criteria decisionmaking (MCDM)model assumes that, when taking a decision, the decision
maker has defined a fixed set of criteria and is presentedwith a clear picture of all available alternatives. The task
then reduces to computing the score of each alternative, thus producing a ranking, and choosing the one that
maximizes this value.
However, most real-world decisions take place in a dynamic environment, where the final decision is only taken
at the end of some exploratory process. Exploration of the problem is often beneficial, in that it may unveil
previously unconsidered alternatives or criteria, as well as render some of them unnecessary.
In this paper we introduce a flexible framework for dynamic MCDM, based on the classic model, that can be
applied to any dynamic decision process andwhich is illustrated bymeans of a small helicopter landing example.
In addition, we outline a number of possible applications in very diverse fields, to highlight its versatility.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Most real-world decision problems are dynamic, in the sense that
the final decision is taken only at the end of some exploratory process,
during which both alternatives and criteria may vary, as the examples
of Section 6.1 testify.

However, the classic multiple-criteria decision making (MCDM)
model is unable to capture this dynamicity, since it assumes that,
before proceeding with the ranking, the decision maker must have
identifiedfixed sets of criteria and alternatives.While, in principle, this
model could be used in a dynamic setting by considering subsequent
decisions to be completely independent one from the other, doing so
would constitute a gross oversimplification of the way humans think
about the fine interlinking that exists among decisions in a dynamic
environment, in which earlier evaluations affect later ones.

The framework we propose in this paper aims to address this
problem by extending the classic MCDM model in a flexible way that
enables its use in very diverse fields requiring some form of dynamic
decision making.

The rest of this paper is organized as follows. In Section 2, we
briefly review the classicMCDMmodel and present the general theory
our framework is set in. Subsequently, in Section 3, we delve into
the crucial issue of choosing an appropriate aggregation function for
this model, and present some well-known examples from the recent
literature. We then give, in Section 4, a general overview of related
work, before going into the details of our proposed framework in
Section 5. To better illustrate our proposal, we make use of a numerical

example (Section 6) and present a number of possible applications
(Section 6.1).

2. Classic MCDM model

The classicmultiple-criteria decisionmaking (MCDM)model [18,42]
prescribes ways of evaluating, prioritizing and selecting the most fa-
vorable alternative from a set of available ones that are characterized by
multiple, usually conflicting, levels of achievement for a set of attributes.
The final decision is made by considering both inter-attribute and intra-
attribute comparisons, possibly involving trade-off mechanisms.

Mathematically, a typical MCDM problem with m alternatives and
n criteria is modeled by the matrix

where xij∈ [0, 1] represents the level of achievement of alternative
ai, i=1,…,mwith respect to criterion cj, j=1,…, n, with 0 interpreted
as “no satisfaction” and 1 corresponding to “complete satisfaction”. It
is also common to introduce a weight vector w∈ [0, 1]n, ∑j=1

n wj=1
whose generic component wj, j=1, …, n is the weight associated to
criterion cj representing its relative importance.
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Evaluation of alternatives is performed bymeans of an aggregation
function f : [0, 1]n→ [0, 1], which maps vectors of criteria values xi,
i=1, …, m to the [0, 1] interval and satisfies, for all x, y∈ [0, 1]n,

f f ð0;0;…;0Þ
︸n times

= 0

f ð1;1;…;1Þ
︸n times

= 1
preservation of boundsð Þ;

x≤ y⇒ f xð Þ≤ f yð Þ monotonicityð Þ:

The resulting value is considered a score indicating how preferable
the associated alternative is, with the common understanding that
0 corresponds to “no preference” and 1 to “strongest preference”.
Given these scores, alternatives may then be ordered, thus producing
a ranking, and the best one might be selected.

It is clear that the aggregation function chosen for distilling criteria
values into a single score plays a crucial role in this model, which in
turn means that its mathematical properties need to be better
categorized and understood. For this reason, in the following section
we will present some of the more commonly used aggregation
functions, highlighting interesting properties and providing pointers
to existing literature for the interested reader.

3. Aggregation functions

As we have seen in the previous section, the key component of
the classic MCDM model is the aggregation function used to associate a
single score to each alternative by distilling the different evaluations (one
for each criterion). It is thus easy to understand that the mathematical
properties of this function will have a direct impact on the produced
values and, therefore, on the final ranking of alternatives.

In the rest of this section we will present well-known aggregation
functions, highlighting interesting properties such as full or partial
reinforcement [42], which might prove useful in the decision process.

For more information on the broad field of aggregation functions,
as well as for identifying a set of general guidelines to help select one,
the interested reader should refer to [40,2,10,44,7,33,3]; our exposi-
tion will broadly follow [3].

3.1. Averaging aggregation functions

Averaging aggregation functions are probably the most commonly
used aggregation functions. An aggregation function f is averaging if,
for every x, min xð Þ≤ f xð Þ≤max xð Þ:

A wide and well-known class of averaging aggregation functions
is that of means, which includes the arithmetic, quasi-arithmetic,
geometric, harmonic and power means, as well as their weighted
counterparts. Another family of averaging aggregation functions,
introduced by Yager [39] and especially popular in the fuzzy sets
community, is that of Ordered Weighted Averaging functions (OWA),
which associate weights to values rather than particular inputs.

When criteria cannot be considered preferentially independent, as
is often the case, a natural choice for the aggregation function is the
discrete Choquet integral [15–17], which is able to model the
importance of single criteria as well as of subsets of criteria.
Underlying the Choquet integral is a monotonic set function, called
capacity [9], that plays a role similar to that of a weight vector in
traditional weighted arithmetic means.

Another interesting approach that should be mentioned is that of
mixture operators [26,24], which extend weighted averaging opera-
tors by considering weighting functions defined on the aggregation
domain instead of constant weights. Depending on the type
of weighting function used, one can for example penalize poorly
satisfied attributes, and reward well-satisfied ones. Two kinds of

functions have been considered in this context, namely linear and
quadratic weight generating functions [25,27].

Note, however, that these aggregation functions are in general not
associative, and will thus not be the subject of further discussion in
this review as they are not suited for the progressive aggregation
process introduced later in this work.

3.2. Conjunctive aggregation functions

As their name implies, conjunctive aggregation functions are used
to model conjunction, i.e. the logical and. They do not allow for
compensation of low scores by other, higher scores, as it is the case, for
example, of obtaining a driving license, for which one has to pass both
the theory and the driving tests.

Therefore, their output is bound from above by the smallest input
value, that is, for every x, f xð Þ≤min xð Þ:

3.2.1. Triangular norms
The prototypical example of a conjunctive aggregation function is

the so-called triangular norm, or t-norm. It was first introduced by
Menger [20] as an operation for the fusion of distribution functions on
statisticalmetric spaces, and its current definition, due to Schweizer and
Sklar [32], requires associativity, symmetry and neutral element 1.

Four basic examples of t-norms are the minimum, the product,
the Łukasiewicz t-norm and the drastic product [3]. The weakest
and the strongest t-norms are the drastic product and the minimum,
respectively; for every x and every t-norm T, it holds that
TD xð Þ≤ T xð Þ≤ Tmin xð Þ:

3.2.2. Parametric t-norms
Many families of related t-norms are defined by explicit formulas

dependingon someparameter. Themain families of parametric t-norms
are Hamacher's [44], Yager's [38] and Sugeno–Weber's [35], some of
which include the basic t-norms as limiting cases.

3.3. Disjunctive aggregation functions

Disjunctive aggregation functions behave the opposite of conjunc-
tive ones, in that satisfaction of any criteria is enough by itself, although
positive inputs may reinforce one another. As their name implies, they
are used to model disjunction, i.e. the logical or.

Therefore, their output is bound from below by the largest input
value, that is, for every x, f xð Þ≥ max xð Þ:

3.3.1. Triangular conorms
The dual aggregation function of a triangular norm is called a

triangular conorm, or t-conorm. The current definition, again due to
Schweizer and Sklar [32], requires associativity, symmetry and neutral
element 0.

Four basic examples of t-conorms are the maximum, the prob-
abilistic sum, the Łukasiewicz t-conorm and the drastic sum [3].
The weakest and the strongest t-conorms are the maximum and the
drastic sum, respectively; for every x and every t-conorm S, it holds
that Smax xð Þ≤ S xð Þ≤ SD xð Þ:

3.3.2. Parametric t-conorms
As for t-norms, many families of related t-conorms are defined by

explicit formulas depending on some parameter. The main families of
parametric t-conorms are again Hamacher's [44], Yager's [38] and
Sugeno–Weber's [35], some of which include the basic t-conorms as
limiting cases.
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