
Efficient construction of histograms for multidimensional data using quad-trees

Yohan J. Roh a,⁎, Jae Ho Kim b, Jin Hyun Son c, Myoung Ho Kim b

a Data Analytics Group, Samsung Advanced Institute of Technology, Samsung Electronics Nongseo-dong, Yongin Si Giheung-gu, Gyeonggi-Do 446-712, South Korea
b Department of Computer Science KAIST 373-1 Guseong-dong, Yuseong-gu, Taejon 305–701, South Korea
c Department of Computer Science and Engineering Hanyang University 1271 Sa-1 dong, Ansan, Kyunggi-do 425-791, South Korea

a b s t r a c ta r t i c l e i n f o

Article history:
Received 29 January 2010
Received in revised form 2 May 2011
Accepted 15 May 2011
Available online 19 May 2011

Keywords:
Data management
Query optimization
Selectivity estimation
Multidimensional histograms

Histograms can be useful in estimating the selectivity of queries in areas such as database query optimization
and data exploration. In this paper, we propose a new histogrammethod for multidimensional data, called the
Q-Histogram, based on the use of the quad-tree, which is a popular index structure for multidimensional data
sets. The use of the compact representation of the target data obtainable from the quad-tree allows a fast
construction of a histogram with the minimum number of scanning, i.e., only one scanning, of the underlying
data. In addition to the advantage of computation time, the proposed method also provides a better
performance than other existing methods with respect to the quality of selectivity estimation. We present a
new measure of data skew for a histogram bucket, called the weighted bucket skew. Then, we provide an
effective technique for skew-tolerant organization of histograms. Finally, we compare the accuracy and
efficiency of the proposed method with other existing methods using both real-life data sets and synthetic
data sets. The results of experiments show that the proposedmethod generally provides a better performance
than other existing methods in terms of accuracy as well as computational efficiency.

Crown Copyright © 2011 Published by Elsevier B.V. All rights reserved.

1. Introduction

With increasing data volumes, the performance demands on
database systems have grown and the need to produce accurate
approximations of data distributions has also increased significantly.
In particular, the estimation of the selectivity of a query, i.e., the
number of data objects in the query region, can be used for database
query optimization [18,19]. It also can be used for some types of query
processing such as skyline query processing, spatio-temporal query
processing, top-k query processing and so on [2,4–7,27,32–34].

Motivated by these applications, there has been much work on the
problem of selectivity estimation: histograms [1,3,9–11,13–
16,20,25,29,30,35], wavelet transformation [24,36], discrete cosine
transformation [23], and sampling [17]. Among these approaches,
histograms have been shown to be one of the most popular and
effective ways to obtain accurate estimates of selectivity for multi-
dimensional queries [10].

A histogram consists of a set of buckets bi, i=1, …, n, where each
bucket bi has its data space si and the number of data objects fi in si. All
the data objects in the region of a bucket are assumed to be uniformly
distributed (commonly called uniform distribution assumption). The
number of buckets is usually a system parameter and is reasonably
small so that all the buckets can be kept in memory. The process of

constructing a histogram is typically performed periodically to reflect
changes in the underlying data distribution.

Given a data range I specified by a query, an estimate of the
selectivity for the query is computed as follows, under uniform
distribution assumption:∑ i=1…n|si∧ I|/|si|⋅ fi. Here, | | denotes the size
of a data space and ‘si ∧ I’ denotes the intersection of si and I. An
estimate of the selectivity for one bucket is computed in proportion to
the size of the overlapping region between the query region and the
bucket region. The selectivity estimate for a query is the sum of all the
estimated values for all the buckets.

When data objects are not uniformly distributed in buckets, the
accuracy of histograms will decrease. Therefore, a histogram should
be organized in such a way that data in each bucket is as uniformly
distributed as possible.

Now let us consider index structures that are used widely in
commercial database systems. As noted in [10,19], someof the existing
index structures can be an interesting starting point for constructing
histograms. The quad-tree and its variants have been popularly used as
index structures for the fast access of multidimensional data sets.
When a quad-tree has already been used as an index for some
applications, we can improve the cost of histogram construction by
using the data partition information implied in this quad-tree. That is,
utilizing the existing quad-tree can provide an advantage of
computing time for construction of buckets. Then, our problem can
be stated simply as follows, when a given number of buckets is B:
Partition a set of leaf nodes in a quad-tree into B groups such that the
data objects in each group are as uniformly distributed as possible.
Here, each group corresponds to one bucket. When there are K leaf

Decision Support Systems 52 (2011) 82–94

⁎ Corresponding author. Tel.: +82 312809728; fax: +82 312809086.
E-mail addresses: yohan.roh@samsung.com (Y.J. Roh), jaeho@dbserver.kaist.ac.kr

(J.H. Kim), jhson@hanyang.ac.kr (J.H. Son), mhkim@dbserver.kaist.ac.kr (M.H. Kim).

0167-9236/$ – see front matter. Crown Copyright © 2011 Published by Elsevier B.V. All rights reserved.
doi:10.1016/j.dss.2011.05.006

Contents lists available at ScienceDirect

Decision Support Systems

j ourna l homepage: www.e lsev ie r.com/ locate /dss

http://dx.doi.org/10.1016/j.dss.2011.05.006
mailto:yohan.roh@samsung.com
mailto:jaeho@dbserver.kaist.ac.kr
mailto:jhson@hanyang.ac.kr
mailto:mhkim@dbserver.kaist.ac.kr
http://dx.doi.org/10.1016/j.dss.2011.05.006
http://www.sciencedirect.com/science/journal/01679236

nodes in the quad-tree, the number ofways of partitioningK leaf nodes
into B groups, commonly known as Stirling number of the second kind S
(K, B), can be quite large in practice. This problem is NP-Hard, and
therefore, someheuristics need to be employed. The partitioningof the
leaf nodes can proceed in either a bottom-up or top-down fashion.We
will start with the root node of the quad-tree and proceed in a top-
down fashion.

In this paper, we will propose a new multidimensional histogram
method, called the Q-Histogram, which is based on the use of the
existing quad-tree. The proposed Q-Histogram divides a given data
set with various levels of granularity by using the information in
the quad-tree with the minimum number of scanning, i.e., only one
scanning, of the underlying data. Through extensive experiments, we
show that Q-Histogram has better performance than other existing
methods with respect to accuracy as well as computational efficiency.

The rest of the paper is organized as follows. Section 2 describes
related work. We present our proposed histogram method in Section
3. Section 4 provides the results of performance experiments with
four real-life data sets as well as one synthetic data set. Finally in
Section 5, we present conclusions and future work.

2. Related work

Histograms on multiple attributes can be used for processing and
optimizing queries. For query optimization, histograms can be used to
estimate the selectivity of queries and to generate the most efficient
query execution plans [18,19].

For skyline query processing, Chaudhuri et al. [6] and Papadias et
al. [27] use histograms to accurately estimate the result sizes of
skyline queries, which can be useful in providing immediate feedback
to the user and implementing skyline computation as an operator in
database systems.

For spatio-temporal query processing, the authors of [7] use a
histogram technique and extend it with velocities to estimate the
selectivity of spatio-temporal window queries, i.e., the number of
objects that will appear in the query window at a given future time.
For the same purpose, Tao et al. [33] propose a set of histogram-based
solutions. Sun et al. [32] make use of histograms to accurately
estimate the selectivity of spatio-temporal joins, i.e., for two given sets
S1 and S2 of objects, the number of pairsbo1, o2Nof objects, such that
o1∈S1, o2∈S2, and the distance between these two objects at a given
future time is below a certain threshold.

For load-balancing of parallel hash joins, Poosala and Ioannidis
[28] use the statistics of histograms to accurately estimate the cost
required to perform the join operation, and effectively balance the
load across nodes that participate in the parallel execution.

For top-k query processing, Bruno et al. [4] and Chaudhuri et al. [5]
use histograms for translating a top-k request into a single range
query that can be efficiently processed by existing database engines.
They have shown that using histograms can avoid the requirement of
a full sequential scan of the database, and thus significantly reduce the
time to perform top-k queries.

Over the past decades, many studies have been conducted to
enhance the performance of multidimensional histograms. The
underlying assumption in using a histogram is that the histogram
performs well when data is uniformly distributed in every bucket.
However, the problem of organizing buckets in such a way that the
data is uniformly distributed in every bucket is NP-hard in two or
more dimensions [26] and heuristics have been proposed.

The EquiDepth histogram method [25] partitions the target space,
one dimension at a time. Here, in each i-th dimension, the target space
is divided into vi intervals, each of which has the same number of data.
So, for a d-dimensional data set, a set of v1×v2×…×vd buckets is
constructed, where each bucket contains the same number of data.
The EquiDepth histogram may be faster to construct among other

types of histograms, while because of its rigid structure it may not be
flexible to cope with various cases of data skew.

TheMinSkew histogrammethod [1] uses binary space partitioning,
where a bucket is partitioned into two new buckets. This partitioning
approach may construct histograms rapidly; however, MinSkew may
not recognize regionswhere data are not uniformly distributed, which
may decrease the accuracy of selectivity estimation. This is because
the partitioning heuristics of MinSkew is based on data skew in only
one-dimension at a time rather than considering the skew of multiple
dimensions at once.

The GenHist histogram method [15,16] uses multidimensional
grids of various sizes, where high-frequency grid cells are converted
into buckets. More specifically, GenHist iteratively constructs a certain
number of buckets by using grids. Here, the grid sizes and the number
of buckets constructed per iteration are determined by using the
system parameter (i.e., the total number of buckets) and the user-
provided parameter (i.e., initial grid size). Being different from the
above approaches, this method directly approximates multidimen-
sional (i.e., joint) data distributions. The authors of GenHist claim that
the GenHist histogram behaves more accurately for data sets in high-
dimensional spaces than some previous approaches, such as random
sampling, wavelet transformation [36], and MinSkew [1]. However,
the performance of GenHist may vary depending on the input
parameters. Furthermore, in practice, it is difficult for users to provide
the optimal or a near optimal value for the required parameter.
Another drawback of this technique is that it requires multiple passes
(at least 5 to 10) over the entire data set [3].

The RK-Histhistogrammethod, which has been recently proposed in
[10], uses a variant of an R-tree index, called the Hilbert packed R-tree
[21],where theentire data are sortedbasedon their ownpositionsalong
the Hilbert curve. The sorted data are divided into several leaf nodes of
the tree, inwhich the size of each leaf node is a disk block. Then, RK-Hist
creates an initial set of buckets, each constructed by merging a fixed
numberof leaf nodes. For eachbucket, the skewof data is computed, and
then some bucket with a high skew is split into two new buckets
repeatedly, until the total number of buckets becomes the predefined
number or there is no improvement of the total skew of data in buckets.
The authors of RK-Hist claim that the RK-Hist histogram works better
than other existing methods, such as a traditional histogram technique
[29], EquiDepth [25], and GenHist [15,16], in terms of estimation
accuracy. However, the worst case time complexity of RK-Hist is O
(d·N2), where d is the dimension of the data space and N is the number
of data objects. That is, the construction time of RK-Hist will be high,
when the number of data becomes large. RK-Hist may introduce
unnecessary buckets, when a fixed number (say p) of leaf nodes are
merged into an initial bucket. For example, consider a nonleaf node u
with a very low skew that is an ancestor of a large number of leaf nodes.
If the number of the descendant leaf nodes of u is much greater than p,
several buckets will be constructed from these leaf nodes, but only one
bucket consisting of a single node u suffices to provide accurate
selectivity estimation instead of several buckets. Note that, after the
initial buckets are made, no merging is performed in subsequent steps.

There are several approaches for the layout of buckets. In the grid
approach, buckets are arranged in rows and columns (e.g., as in the
well-known equal-width histogram). In the recursively partitioning
approach, a bucket is recursively partitioned into two new buckets
along some dimension (e.g., as in MinSkew [1]). There are also other
approaches that impose fewer restrictions than the above approaches
on the arrangement of buckets, that is, allow a newly created bucket
to cover a portion of data space in a more flexible way. For example, in
GenHist [15,16] and RK-Hist [10], the regions of buckets are allowed to
overlap. The histogrammethod proposed in this paper also allows the
regions of buckets to overlap.

Histograms are typically recomputed to reflect updates of the
underlying data in a periodic manner. There is another interesting
approach in maintaining histograms, called the self-tuning histogram

83Y.J. Roh et al. / Decision Support Systems 52 (2011) 82–94

Download English Version:

https://daneshyari.com/en/article/553680

Download Persian Version:

https://daneshyari.com/article/553680

Daneshyari.com

https://daneshyari.com/en/article/553680
https://daneshyari.com/article/553680
https://daneshyari.com

