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In this paper, we consider the problem of finding a preference-based strict partial order for a finite set of
multiple criteria alternatives. We develop an approach based on information provided by the decision maker
in the form of pairwise comparisons. We assume that the decision maker's value function is not explicitly
known, but it has a quasi-concave form. Based on this assumption, we construct convex cones providing
additional preference information to partially order the set of alternatives. We also extend the information
obtained from the quasi-concavity of the value function to derive heuristic information that enriches the strict
partial order. This approach can as such be used to partially rank multiple criteria alternatives and as a
supplementary method to incorporate preference information in, e.g. Data Envelopment Analysis and
Evolutionary Multi-Objective Optimization.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The purpose in Multiple Criteria Decision Making (MCDM) is to
find the most preferred solution among a set of implicitly or explicitly
defined alternatives characterized by several criteria, or to rank such
alternatives. The problems where alternatives are implicitly defined
using constraints are called multiple criteria design problems and the
problems where alternatives are explicitly given are called multiple
criteria evaluation problems. In this paper, we consider multiple
criteria evaluation problems where a Decision Maker (DM) evaluates
the explicitly given alternatives.

Which kind of approach is most suitable to solving evaluation
problems is heavily dependent on the characteristics of the problem.
The outranking approach [21], the multi-attribute value function
approach [6], the analytic hierarchy process [22], the regime method
[4], the hierarchical interactive approach [7], the visual reference
direction approach [8], the aspiration-level interactive method (AIM)
[18,19], and the hybrid method [17] are typical examples of
approaches developed to solve evaluation problems.

A class of methods is based on implicitly known value functions.
No attempt is made to construct the value function, but assumptions
of its functional form are used to structure the search process. Typical

assumptions are linearity, Chebyshev-type min–max function, quasi-
concavity, pseudo-concavity, etc. of the value function. Examples of
such methods are presented in Refs. [10–13,15,26]. There are also
approaches to find which form of value function the DM's preferences
are consistent with [14,24].

Various interaction styles have been proposed for interactive
approaches in general. Examples include requiring pairwise compar-
ison of alternatives [27], local tradeoff ratios [2], interval local tradeoff
ratios [23], comparative tradeoff ratios [5], reference points [25], and
reference directions [9]. A good interactive approach does not waste
the DM's time, and its communication language is easy. Furthermore,
it is a good idea to increase the intelligence of the system, but it is
important to remember that the DM wants to keep the control of the
system in his/her own hands. There are several ways to implement a
dialogue between an interactive approach and the DM. In this paper
we require pairwise comparison information as we think it is easy and
relevant for a DM to compare pairs of alternatives.

Our aim in this paper is to produce a preference-based strict partial
order for a finite set of multiple criteria alternatives. We try to create
the strict partial order by making maximum use of the available
preference information in the form of pairwise comparisons. We
assume that the DM's value function is unknown to us, but it has a
quasi-concave form. Based on the available preference information
and exploiting the implications of a quasi-concave value function, we
construct convex cones [10] and polyhedrons to provide additional
preference relations that enrich the strict partial order of alternatives.
We also introduce heuristics to extract further approximate prefer-
ence relations that can be used in the partial order.

This paper unfolds as follows. Section 2 provides preliminary
considerations. Section 3 develops the main idea and formulations.
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Section 4 includes an illustrative example and finally Section 5
concludes the paper.

2. Preliminary considerations

Consider a discrete, finite, deterministic multiple criteria evalua-
tion problem where a single DM compares a set of n alternatives with
respect to p criteria. The set S of alternatives includes vectors Xi∈ℜp,
i∈N={1, …, n}, with elements xijN0 for all j. Without loss of
generality, assume that for each criterion more is better. We define
the dominance in ℜp in the usual way.

Definition 1. A vector X⁎∈ℜp is non-dominated iff (if and only if)
there does not exist another X∈ℜp such that X≥X⁎ and X≠X⁎.

Definition 2. The function f: Ω→ℜ, Ω⊆ℜp, is called a value function
if it has the following properties:

1. f(X⁎)N f(X), if X⁎ dominates X.
2. f(X⁎)N f(X), iff X⁎ is preferred to X.
3. f(X⁎)≥ f(X), if X⁎ is at least as preferred as X.

Property 1 implies that function f is also strictly increasing in setΩ,
whereΩ consists of all points at which the value function evaluation is
needed. Hence forward, we assume that the DM's value function is
quasi-concave and that we only know of its form.

In the following we use the symbol “≻” to indicate the relationship
“is preferred to.” When needed, we also use the symbol “≻P ” to
indicate “is at least as good as.” It can be seen that both relations are
transitive. The DM's preferences are expressed by the set P={(Xr, Xs) |
Xr≻Xs, r, s∈N}. Thus P defines a strict partial order in S (an asymmetric
transitive binary relation over S).

The efficiency of interactive procedures is heavily dependent on
what kind of and how much information the DM is required to
provide. The assumptions that are made about the value function
facilitate the convergence of an interactive procedure. However, such
assumptions should be as realistic as possible. For example, a linear
value function assumption produces a fast convergence, but none of
the convex dominated alternatives can be most preferred [28]. The
quasi-concavity assumption of the value function is quite general, yet
powerful in constructing a strict partial order for alternatives.
Moreover, convex dominated alternatives can be most preferred.
When assuming that the value function is quasi-concave, based on
pairwise preference information, we may construct so called convex
cones, characterizing the vertex of the cones by inferior alternatives.

To be more precise, assume that we havem (distinct) points X1,…,
Xk−1, Xk, …, Xm such that Xi≻Xk for i=1, …, m and i≠k. Then by
Definition 2, f(Xk)b f(Xi), i=1, …, m, and i≠k. The subset of S
including m different points X1, …, Xk−1, Xk, …, Xm such that Xi≻Xk

for i=1, …, m and i≠k is called a preference subset and is denoted by
{X1, …, Xm; Xk}.

Based on this preference subset, we may construct a cone where
alternative Xk is the vertex of the cone. We define the cone C(X1, …,
Xm; Xk ) with vertex Xk as follows:

C X1;…;Xm;Xkð Þ= fX jX = Xk +∑
i≠k

μi Xk−Xið Þ; μi≥0; i = 1; …; m; i≠kg:

Based on the quasi-concavity assumption of our value function f,
for any Z∈C(X1, …, Xm; Xk), we have shown ([10]) that f(Xi)N f(Xk)≥
f(Z) for i=1, …, m and i≠k which means that Xk ≻P Z. Each point
Z∈C(X1, …, Xm; Xk), Z≠Xk, or any point V dominated by Z, is called
cone dominated.

Moreover, we may define a polyhedron spanned by the points
X1, …, Xm as follows:

H X1;…;Xmð Þ = fX jX = ∑
m

i=1
μiXi; ∑

m

i=1
μi = 1; μi≥0; i = 1;…;mg:

If Y∈H (X1,…, Xm), then from the definition of quasi-concavity it

follows that f(Y)= f ∑
m

i=1
μiXi

� �
≥mini f(Xi)= f(Xk) which means that

Y ≻P Xk.
In fact for each preference subset {X1, …, Xm; Xk} we may define a

convex cone and a polyhedron. Based on the structure of these two
sets and the assumptions made about the value function, it is
possible to extract more preference information about other
points not belonging to the corresponding preference set with
respect to Xk by checking whether or not the point belongs to the
convex cone C(X1, …, Xm; Xk) or falls under it, or belongs to the
polyhedron H(X1, …, Xm) or lies above it.

Without loss of generality, let the DM's preference set P be
expressed as the union of several preference subsets—each one
characterized by its worst point as the vertex. Different preference
subsets yield different convex cones and polyhedronswhich enable us
to extract more information to update the preference set P by adding
new preference comparisons.

In Fig. 1, we illustrate how the quasi-concavity assumption brings
additional information to the preference-based ranking of alternatives.

Consider alternative X2. In case we have no preference informa-
tion, we can use only dominance. For any Y1 in the region dominating
X2(region E3 in Fig. 1) we have Y1≥X2, Y1≠X2 which implies that
Y1≻X2. Similarly, for any Y2 in the region dominated by X2(region A1 in
Fig. 1) we have X2≥Y2, X2≠Y2 which implies that X2≻Y2. Finally, if
(X1,X2)∈P then for any Y3 in the region dominating X1(region E2 in
Fig. 1), we have Y3≻X1≻X2.

When we use the quasi-concavity assumption, we can exploit the
available preference information further, as we will show in detail in
the next section. Specifically, we may use a convex cone to conclude
that for any Y4 in region A2 in Fig. 1 we have X2 ≻P Y4 and wemay use a
polyhedron to conclude that for any Y5 in region E1 in Fig. 1 we have
Y5 ≻P X2.

3. The method

The goal is to implement the above concepts from [12] to define a
strict partial order for set S. Moreover, Prasad et al. [20] proposed an
approach extending the idea of convex cones heuristically. They
developed the concept of p-cone efficiency, providing a measure to
find out how close an alternative is from being dominated by the
cone under consideration. The smaller the measure, the closer the
alternative is to being dominated.
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Fig. 1. Illustration of additional information provided by quasi-concavity.
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