
What drives knowledge sharing in software development teams:
A literature review and classification framework

Shahla Ghobadi *

Australian School of Business, University of New South Wales, Sydney, NSW 2052, Australia

1. Introduction

Software development is a collaborative and knowledge-inten-
sive process that requires the blending and interweaving of diverse
knowledge dispersed across domains of specialization [72,81]. The
unique and inherent characteristics of software development signify
the importance of effective knowledge sharing, referring to the

exchange of task-related information, ideas, know-hows, and feedback

regarding software products and processes [19], in exploiting available
resources, addressing perceived challenges, and exploring emerging
opportunities in software development and design [23,20,85]. For
example, software, as a product, continuously emerges from
intensive and iterative development and quality assurance cycles
that require rapid reflections and frequent introspections across
team members who represent different specializations, are often
distributed, and may have opposing professional priorities
[73,29,100,16]. Furthermore, from self-organizing open source
communities [87] to distributed software development, which is
rapidly becoming a norm in software companies, effective
knowledge sharing is necessary to allow team members to discuss
critical aspects of projects and overcome the cultural and social
challenges of coordinating work across distributed spaces [17].

Nonetheless, several challenges may complicate knowledge
sharing in software development teams [84,14]. For example,
managing the diverse social identities and cross-functionality of
team members [28,15], overcoming coordination challenges
across distributed sites [17], creating homogeneous teams with
a shared understanding [67] and motivating stakeholders to share
embedded knowledge with development teams [18] can be
challenging. Although technological solutions such as compo-
nent-based development have been designed to facilitate rapid
development and reduce the need for communication [50],
research suggests that they have even exacerbated the need for
knowledge sharing; for example, achieving ideal levels of
component reuse requires developers to effectively share their
knowledge of different components that they have developed and
used [50].

Accordingly, researchers have studied knowledge sharing
drivers in software teams (factors that drive the exchange of task-

related information, ideas, know-hows, and feedback regarding

products and processes) to propose effective ways of facilitating
knowledge sharing within these contexts [100,15,61,30]. For
example, Kotlarski and Oshri [49] emphasize the role of human-
related issues, such as ‘rapport’ and ‘transactive memory’, in
driving knowledge sharing within globally distributed software
projects, Joshi et al. [45] employ a connectionist epistemological
perspective and show the crucial role of ‘source credibility’ and
‘extent of communication’ in shaping knowledge transfer.

Information & Management 52 (2015) 82–97

A R T I C L E I N F O

Article history:

Received 15 September 2013

Received in revised form 7 October 2014

Accepted 12 October 2014

Available online 22 October 2014

Keywords:

Software development

Software teams

Information system development

Knowledge sharing

Knowledge transfer

Literature review

A B S T R A C T

Although scholars have long studied knowledge sharing drivers within software development teams, our

knowledge remains fragmented by the divergent efforts that are based on and contribute to theoretical

perspectives. This study provides a review of the extant literature (1993–2011) on knowledge sharing

drivers in software teams and establishes a classification framework using an organizational change

perspective. A synthesis of the literature uncovers diverse themes and gaps in the existing body of

knowledge, suggests several paths for advancing theory on knowledge sharing in software development

contexts, and discusses implications for practitioners concerned with knowledge sharing in software

development.

� 2014 Elsevier B.V. All rights reserved.

* Current address: University of New South Wales, Sydney, NSW 2052, Australia.

Tel.: +61 2 9385 7130; fax: +61 2 9662 4061.

E-mail address: s.ghobadi@unsw.edu.au

Contents lists available at ScienceDirect

Information & Management

jo u rn al h om ep ag e: ww w.els evier .c o m/lo c ate / im

http://dx.doi.org/10.1016/j.im.2014.10.008

0378-7206/� 2014 Elsevier B.V. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.im.2014.10.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.im.2014.10.008&domain=pdf
http://dx.doi.org/10.1016/j.im.2014.10.008
mailto:s.ghobadi@unsw.edu.au
http://www.sciencedirect.com/science/journal/03787206
www.elsevier.com/locate/im
http://dx.doi.org/10.1016/j.im.2014.10.008


Exploring the role of transactive memory in distributed software
teams, Oshri et al. [70] suggest that the ‘standardization of
templates and methodologies across remote sites’, ‘frequent
teleconferencing sessions’ and ‘occasional short visits’ support
knowledge transfer. Pee et al. [73] use the lens of social
interdependence theory to explain how goal, task, and reward
interdependencies shape knowledge sharing between business
and external IT consultant subgroups. Building on Pee et al.’s study,
Ghobadi and D’Ambra [30] describe the dynamics through which
interdependencies, including ‘outcomes’ (goals, rewards), ‘means’
(task-related), and ‘boundary’ (friendship, sense of identity,
geographical closeness), interact and drive simultaneously coop-
erative and competitive behaviors, which in turn shape high-
quality knowledge sharing in multi-party software teams.

Despite the valuable findings of previous studies, our under-
standing of this phenomenon is still emerging, and research is
fragmented with limited integrated efforts that are based on and
contributing to rich and rigorous theoretical perspectives. For
example, whilst studies point to knowledge sharing drivers in
software development teams [100,16,49,70], their focus is limited
to examining a small and selected set of drivers; for instance, Chou
and He [16] show the effect of ‘open source software values and
norms’ on collaborative knowledge sharing in open source
software teams, and Joshi et al. [45] highlight the importance of
a ‘source’s credibility’ and ‘extent of communication’ in shaping
knowledge sharing practices. Furthermore, several research
articles use terms such as ‘participation’ [2,5], ‘requirement
gathering’ [34,33], ‘activity engagement’ [35], and ‘sense giving’
[90] to refer to the exchange of task-related information, ideas,
know-hows, and feedback regarding software products and
processes (knowledge sharing); for example, ‘participation’ and
‘activity engagement’ are used to refer to assisting others by
answering their questions [5] and contributing to mailing lists in
virtual open source development teams [35], and ‘requirement
gathering’ has been reported as the process through which users
share business and technical knowledge along with ‘what they
want from the product’ with a development team [33]. In addition,
researchers diverge in their underlying assumptions and research
terminologies when studying knowledge sharing in software
development teams, and consequently, a clear consensus in
conceptualizations and findings has not been realized; e.g., the
term ‘knowledge transfer’, which is primarily concerned with the
internalization of the shared knowledge [45], is also used to refer to
the simple sharing of knowledge [91,3,32].

Despite the importance of the subject, no research bridges
multiple views and integrates existing findings into a comprehen-
sive framework for researching and managing knowledge sharing
drivers in software development teams. Although systematic
literature reviews on the general aspects of knowledge manage-
ment in software engineering exist [11], the lack of a focused

review on knowledge sharing drivers within software teams and
the paucity of efforts to integrate the existing fragmented
knowledge complicate the prospect of understanding the current
state of research and a continued discussion on the topic.

This study therefore aims to integrate existing findings,
improve our understanding of the phenomenon of knowledge
sharing in software development teams, and guide future research
in this area. For this, a synthesis of the predominant literature with
the following two research objectives is undertaken: (i) to identify
patterns that emerge from previous research on knowledge
sharing drivers in software development teams and (ii) to study
the reported knowledge sharing drivers and integrate them into a
framework that provides a rich picture of knowledge sharing
drivers in software teams and facilitates studying knowledge
sharing in software development contexts. To address the research
objectives, the following steps are followed: (i) the existing
literature is reviewed through the guidance of the following
research question, what drives knowledge sharing in software

development teams?, (ii) the contexts and terminologies referring
to knowledge sharing and the employed research methodologies
are extracted and analyzed, (iii) the reported knowledge sharing
drivers are consolidated, classified and integrated into a classifica-
tion framework, and (iv) the themes and gaps in the existing body
of knowledge are highlighted, and avenues for future research are
discussed. The remainder of the paper is structured as follows.
Section 2 details the research methodology. Sections 3–5 elucidate
the results of the literature review and synthesis and present the
classification framework. Research and practical implications are
discussed in Section 6, prior to outlining final remarks and research
limitations in Section 7.

2. Research method

Fig. 1 demonstrates the three methodological phases along with
their relevant steps. Based on the systematic mapping method
[76,6], which focuses on categorizing the research phenomenon
under investigation and visualizing findings into a structured
framework, the methodology consists of three major phases,
including: (i) planning the study, (ii) conducting the study, and (iii)
reporting the review. Sections 3–5 explain each of the three phases,
supplemented by a detailed discussion of the results and avenues
for future research in Sections 6 and 7.

3. Phase 1: planning the study

The first and second steps in ‘planning the study’ involved
‘identifying the need and rationale for the study’ and ‘formulating
the research question’. The third step was the ‘development of a
review protocol’ to guide the review; for this, an initial review
protocol was written and then was revisited and improved by two

Fig. 1. Methodological phases.

S. Ghobadi / Information & Management 52 (2015) 82–97 83



Download English Version:

https://daneshyari.com/en/article/553844

Download Persian Version:

https://daneshyari.com/article/553844

Daneshyari.com

https://daneshyari.com/en/article/553844
https://daneshyari.com/article/553844
https://daneshyari.com

