
Review

Applications of machine learning in animal behaviour studies

John Joseph Valletta a, *, Colin Torney a, Michael Kings b, Alex Thornton b, Joah Madden c

a Centre for Mathematics and the Environment, University of Exeter, Penryn Campus, Penryn, U.K.
b Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, U.K.
c Centre for Research in Animal Behaviour, University of Exeter, Exeter, U.K.

a r t i c l e i n f o

Article history:
Received 15 August 2016
Initial acceptance 8 September 2016
Final acceptance 15 November 2016
Available online 23 January 2017
MS. number: 16-00718

Keywords:
animal behaviour data
classification
clustering
dimensionality reduction
machine learning
predictive modelling
random forests
social networks
supervised learning
unsupervised learning

In many areas of animal behaviour research, improvements in our ability to collect large and detailed
data sets are outstripping our ability to analyse them. These diverse, complex and often high-
dimensional data sets exhibit nonlinear dependencies and unknown interactions across multiple vari-
ables, and may fail to conform to the assumptions of many classical statistical methods. The field of
machine learning provides methodologies that are ideally suited to the task of extracting knowledge
from these data. In this review, we aim to introduce animal behaviourists unfamiliar with machine
learning (ML) to the promise of these techniques for the analysis of complex behavioural data. We start
by describing the rationale behind ML and review a number of animal behaviour studies where ML has
been successfully deployed. The ML framework is then introduced by presenting several unsupervised
and supervised learning methods. Following this overview, we illustrate key ML approaches by devel-
oping data analytical pipelines for three different case studies that exemplify the types of behavioural
and ecological questions ML can address. The first uses a large number of spectral and morphological
characteristics that describe the appearance of pheasant, Phasianus colchicus, eggs to assign them to
putative clutches. The second takes a continuous data stream of feeder visits from PIT (passive integrated
transponder)-tagged jackdaws, Corvus monedula, and extracts foraging events from it, which permits the
construction of social networks. Our final example uses aerial images to train a classifier that detects the
presence of wildebeest, Connochaetes taurinus, to count individuals in a population. With the advent of
cheaper sensing and tracking technologies an unprecedented amount of data on animal behaviour is
becoming available. We believe that ML will play a central role in translating these data into scientific
knowledge and become a useful addition to the animal behaviourist's analytical toolkit.

© 2017 The Authors. Published by Elsevier Ltd on behalf of The Association for the Study of Animal
Behaviour. This is an open access article under the CC BY license (http://creativecommons.org/licenses/

by/4.0/).

Recent technological advances mean that large data sets can be
collected on the movement (Hussey et al., 2015; Kays, Crofoot, Jetz,
&Wikelski, 2015; Tomkiewicz, Fuller, Kie, & Bates, 2010), fine-scale
motion (Brown, Kays, Wikelski, Wilson, & Klimley, 2013), social
interactions (Krause et al., 2013), vocalizations (Blumstein et al.,
2011) and physiological responses (Kramer & Kinter, 2003) of in-
dividual animals. Conversely, the logistical difficulties of collecting
replicated data, especially fromwild populations, mean that sample
sizes are small, even though data on each individual may be rich,
with many hundreds (or even thousands) of factors to consider.
These complex data sets, generated from different sources, such as
images and audio recordings, may fail to conform to assumptions of
many classical statistical models (e.g. homoscedasticity and a

Gaussian error structure). Moreover, unknown nonlinear de-
pendencies and interactions across multiple variables make it un-
clear what type of functional relationship one should use to
describe such data mathematically. Animal behaviour researchers
are thus in a position where automatically collecting detailed data
sets is becoming commonplace, but extracting knowledge from
them is a daunting task, mainly due to the lack of accessible
analytical tools.

Machine learning (ML) offers complementary data modelling
techniques to those in classical statistics. In animal behaviour, ML
approaches can address otherwise intractable tasks, such as clas-
sifying species, individuals, vocalizations or behaviours within
complex data sets. This allows us to answer important questions
across a range of topics, including movement ecology, social
structure, collective behaviour, communication and welfare. ML
encompasses a suite of methodologies that learn patterns in the
data amenable for prediction. A machine (an algorithm/model)
improves its performance (predictive accuracy) in achieving a task
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(e.g. classifying content of an image) from experience (data). The
objective is for the predictive model to generalize well, that is, to
make accurate predictions on previously unseen data. For instance,
when Facebook users upload their photos, the ‘auto-tagging’ ML
algorithm extracts facial features and suggests names of friends in
that photo. Facebook's predictive model generalizes frommanually
tagged photos (known as the training data set). It is impossible to
‘show’ a machine all the images of an individual (e.g. different facial
expressions); instead themodel uses the extracted features to learn
patterns that best discriminate one individual from another. The
generalization error or predictive performance is a measure of how
many previously unseen images (known as the testing data set) the
algorithm tags correctly.

Both statistical modelling and ML seek to build a mathematical
description, a model, of the data and the underlying mechanism it
represents; thus inevitably there is substantial overlap between the
two (Breiman, 2001b; Friedman, 2001; Zoubin Ghahramani, 2015).
However, historically they differ in their rationale as follows. Sta-
tistical models start with an assumption about the underlying data
distribution (e.g. Gaussian, Poisson). The focus is on inference;
estimating the parameters of the statistical model that most likely
gave rise to the observed data, and providing uncertainty bounds
for these estimates. For ML, the focus is typically on prediction;
without necessarily assuming a functional distribution for the data,
a model that achieves optimal predictive performance is identified.
It is this hypothesis-free approach that makes ML an attractive
choice for dealing with complex data sets. While in traditional
statistical modelling a hypothesis (model) is put forward and is
then accepted/rejected depending on how consistent it is with the
measured observations, ML methods learn this hypothesis directly
from the training data set.

ML can tackle a wide range of tasks, including classifying ob-
servations into predefined sets (Kabra, Robie, Rivera-Alba, Branson,
& Branson, 2013), clustering data into groups that share an un-
derlying process (Zhang, O'Reilly, Perry, Taylor,& Dennis, 2015) and
regressing an outcome of interest against multiple factors and
elucidating their contributory effect (Chesler, Wilson, Lariviere,
Rodriguez-Zas, & Mogil, 2002; Piles et al., 2013). Owing to its
versatility, ML has been applied across a broad set of domains in
animal behaviour to ask and subsequently answer biologically
meaningful questions. Next, we highlight some facets of animal
behaviour where ML has already been deployed.

GPS, accelerometer and/or video data are routinely used to
monitor movement patterns of individuals. Three-dimensional
accelerometer loggers can generate over a million data points per
hour of recording (at a sample rate of 100 Hz). ML is used to
automate the classification of behaviours/activities (Kabra et al.,
2013) and tracking movement trajectories (Dell et al., 2014). This
knowledge can then be used to infer individual decision rules in
collectivemotion (Katz, Tunstrom, Ioannou, Huepe,& Couzin, 2011;
Nagy, Kos, Biro,& Vicsek, 2010) and to compute activity budgets for
individuals without the need for continuous human observation or
time-consuming video analysis. This is especially suitable for or-
ganisms that are hard to observe directly, such as nocturnal (bad-
gers, Meles meles: McClune et al., 2014), pelagic (little penguins,
Eudyptula minor: Carroll, Slip, Jonsen,&Harcourt, 2014) and aquatic
species (great sculpins,Myoxocephalus polyacanthocephallus: Broell
et al., 2013; whale sharks, Rhincodon typus: Gleiss, Wright, Liebsch,
Wilson, & Norman, 2013), or those that are hard to follow contin-
uously owing to their speed or covertness (e.g. cheetahs, Acinonyx
jubatus: Grünew€alder et al., 2012; pumas, Puma concolor: Wang
et al., 2015).

Another context in which ML has been successfully employed is
in vocalization studies. Vocalizations can be recorded remotely
permitting assessments of population size and species composition,

individual behavioural and inter/intraspecific interactions
(Blumstein et al., 2011). A typical recording, made using pulse code
modulation (PCM) at 24-bit and 48 Hz sampling, produces over half
a gigabyte of data per hour. Consequently, inspection of these data
and analysis of sound recordings can be time consuming and highly
subjective when conducted by visual inspection of sonograms.
Instead, ML has been applied to classify and count particular ele-
ments or syllables (Acevedo, Corrada-Bravo, Corrada-Bravo,
Villanueva-Rivera, & Aide, 2009). Early work used ML techniques to
adjudicate similarity between calls based on sets of such elements
(Tchernichovski, Nottebohm, Ho, Pesaran, & Mitra, 2000). These
approaches can also discern differences in calls. Classification of calls
from different species and subspecies is robust (Fagerlund, 2007;
Kershenbaum et al., 2016) and permits assessment of community
structure (e.g. frogs: Taylor, Watson, Grigg,&McCallum,1996; birds:
Brandes, 2008). Finer scale discriminations are possible at both the
individual level (Cheng, Xie, Lin, & Ji, 2012) and the bird song ele-
ments level (Ranjard & Ross, 2008).

The assessment of animal welfare and the emotional states that
may reveal it can be highly subjective, and poor welfare is often
only indicated by multiple interacting factors (Broom & Johnson,
1993). ML can assist in monitoring such behaviours by matching
the human assessment in terms of treatment effects on laboratory
mice,Musmusculus (Roughan,Wright-Williams,& Flecknell, 2009).
Such methods have been extended to provide a diagnostic tool for
psychopharmacological drugs based on mouse open-field behav-
iour (Kafkafi, Yekutieli, & Elmer, 2009). ML was used in a compar-
ative assessment of welfare across multiple laboratory populations
of mice (Chesler et al., 2002) permitting a wide range of potential
explanatory factors, each with diverse distribution, to be consid-
ered simultaneously as well as the interactions between them. A
potential novel use of ML would be to detect emotional state in
animals based on facial expression, body posture or vocalization.
Such techniques have already been used in humans looking at facial
(Michel & El Kaliouby, 2003), physiological (Shi et al., 2010), vocal
(Shami & Verhelst, 2007) and gestural (Castellano, Villalba, &
Camurri, 2007) cues of emotions. ML also permits integration of
multiple sets of these cues to further enhance emotion detection
(Caridakis et al., 2007).

Elucidating the underlying social network structure of in-
dividuals within social groups can help address important ecolog-
ical and evolutionary questions (Krause, James, Franks, & Croft,
2015). Passive integrated transponder (PIT) tags and proximity
loggers now permit automated collection of large volumes of social
interaction data containing both spatial and temporal elements
(Krause, Wilson, & Croft, 2011). Translating such data into biolog-
ically realistic patterns of association is not trivial, and may depend
on subjective decisions by researchers, especially when the in-
stances of association are ambiguous. Co-occurrences in time could
be determined by ML clustering methods with individuals in the
same foraging event (cluster) considered to have a social affiliation
(Psorakis et al., 2015). Such methods appear to be robust and cap-
ture real-life pair bonds well (Psorakis, Roberts, Rezek, & Sheldon,
2012). A second facet of association patterns that benefits from
application of ML techniques is determining to which social
grouping an individual belongs within a network. In many cases,
group membership is ambiguous with individuals having weak or
sporadic membership to multiple clusters of other individuals. A
subjective decision of membership could be arrived at, with such
weak affiliations being discounted. Alternatively, ML techniques
could be deployed to account for such ‘fuzzy overlapping’ (Gregory,
2011), and individuals can have their relative membership of each
group determined.

It is clear that ML can address different objectives in numerous
distinct fields of animal behaviour and is thus becoming a staple
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