Accepted Manuscript

Translocation of nanoparticles and *Mycobacterium marinum* across the intestinal epithelium in zebrafish and the role of the mucosal immune system

Signe Dille Løvmo, Martin Tobias Speth, Urska Repnik, Erling Olaf Koppang, Gareth Wyn Griffiths, Jon Paul Hildahl

PII: S0145-305X(16)30198-7

DOI: 10.1016/j.dci.2016.06.016

Reference: DCI 2665

To appear in: Developmental and Comparative Immunology

Received Date: 14 March 2016

Revised Date: 20 June 2016

Accepted Date: 20 June 2016

Please cite this article as: Løvmo, S.D., Speth, M.T., Repnik, U., Koppang, E.O., Griffiths, G.W., Hildahl, J.P., Translocation of nanoparticles and *Mycobacterium marinum* across the intestinal epithelium in zebrafish and the role of the mucosal immune system, *Developmental and Comparative Immunology* (2016), doi: 10.1016/j.dci.2016.06.016.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Translocation of nanoparticles and Mycobacterium marinum across the intestinal
2	epithelium in zebrafish and the role of the mucosal immune system
3	
4	Signe Dille Løvmo ¹ *, Martin Tobias Speth ¹ *, Urska Repnik ¹ , Erling Olaf Koppang ² ,
5	Gareth Wyn Griffiths ^{1§} , Jon Paul Hildahl ¹
6	
7	¹ Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo,
8	Norway
9	² School of Veterinary Medicine, Norwegian University of Life Sciences,
10	Ullevålsveien 72, 0454 Oslo, Norway
11	
11	
12	* These authors contributed equally; § Corresponding author
13	
14	
15	Abstract
16	Nano- and microparticles are promising carrier systems for oral delivery of drugs or
17	vaccines, particularly in fish aquaculture. However, the mechanisms of uptake, trans-
18	epithelial transport and immune response to nano/micrometer sized particles, or
19	microorganisms such as bacteria are poorly understood in fish. Here, adult zebrafish
20	were used to study the uptake of different nano- and microparticles and the
21	pathogenic bacteria Mycobacterium marinum in the intestine, and their interactions
22	with epithelial cells and the mucosal immune system. Fluorescent particles or bacteria
23	were delivered directly into the adult zebrafish intestine by oral intubation and their
24	localization was imaged in intestine, liver and spleen sections. Zebrafish do not
25	appear to have M-cells, but both nanoparticles and bacteria were rapidly taken up in
26	the intestine and transported to the liver and spleen. In each tissue, both bacteria and
27	particles largely localized to leukocytes, presumably macrophages.

Download English Version:

https://daneshyari.com/en/article/5540256

Download Persian Version:

https://daneshyari.com/article/5540256

Daneshyari.com