ARTICLE IN PRESS

J. Dairy Sci. 100:1–12 https://doi.org/10.3168/jds.2016-12332 © American Dairy Science Association[®]. 2017.

Association of aqueous hydrogen concentration with methane production in continuous cultures modulated to vary pH and solids passage rate

B. A. Wenner,*¹ **J. de Souza,**† **F. Batistel,**† **T. J. Hackmann,**‡ **Z. Yu,*** and **J. L. Firkins***² *Department of Animal Sciences/Interdisciplinary PhD Program in Nutrition, The Ohio State University, Columbus 43210 †Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba, São Paulo, Brazil 13418-900 ‡Department of Animal Sciences, University of Florida, Gainesville 32611

ABSTRACT

The objective of this study was to evaluate the effects of altering pH and solids passage rate (k_p) on concentration of aqueous H_2 [$H_2(aq)$], CH_4 production, volatile fatty acids (VFA) production, and fiber digestibility in a continuous culture fermentation system. The present study was conducted as a 2×2 factorial treatment arrangement in a Latin square design using continuous culture fermentors (n = 4). Our continuous culture system was converted to a closed system to measure CH_4 and H_2 emission while measuring $H_2(aq)$ concentration and VFA production for complete stoichiometric assessment of fermentation pattern. Treatments were control pH (CpH; ranging from 6.3 to 6.9) or low pH (LpH; 5.8 to 6.4) factorialized with solids k_p that was adjusted to be either low (Lk_p; 2.5%/h) or high (Hk_p; 5.0%/h; liquid dilution was maintained at 7.0%/h. Fermentors were fed once daily (40 g of dry matter; 50:50 concentrate:forage diet). Four periods lasted 10 d each, with 3 d of sample collection. The main effect of LpH increased nonammonia nitrogen flow, and both LpH and Hk_p increased nonammonia nonbacterial N flow. We observed a tendency for Hk_p to increase bacterial N flow per unit of nonstructural carbohydrates and neutral detergent fiber degraded. The main effect of LpH decreased $H_2(aq)$ by 4.33 μM compared with CpH. The main effect of LpH decreased CH_4 production rate from 5 to 9 h postfeeding, and Hk_p decreased CH_4 production rate from 3 to 9 h postfeeding. We found no effect of LpH on daily CH₄ production or CH₄ produced per gram of neutral detergent fiber degraded, but Hk_{p} decreased daily CH_4 production by 33.2%. Both the main effects of LpH and Hk_p decreased acetate molar percentage compared with CpH and Lk_p, respectively. The main effect of both LpH and Hk_p increased propionate molar percentage, decreasing acetate-to-propionate

ratio from 2.62 to 2.34. We noted no treatment effects on butyrate molar percentage or total VFA production. The results indicate increasing $k_{\rm p}$ and decreasing $\rm pH$ decreased acetate-to-propionate ratio, but only increasing k_p decreased CH_4 production; lack of differences for LpH might be a result of compensatory methanogenesis during the second half of the day postfeeding.

Key words: methane, continuous culture, passage rate, pH, hydrogen

INTRODUCTION

Greenhouse gases originating from livestock production are a target of environmental emissions mitigation strategies, but estimates of the contribution of enteric CH_4 to global or national emissions vary based on assumptions inherent in the estimate approach (Hristov et al., 2014). Knapp et al. (2014) reported estimates of enteric CH_4 representing 17% of global CH_4 emissions. Enteric fermentation in dairy cattle is estimated to contribute approximately 3.9% of total anthropogenic CH₄ emissions in the United States (EPA, 2013).

A recent hypothesis proposed by Janssen (2010) expanded our perspective on the relationship between physiological changes instigated by dietary or feed additive treatment and their effect on the concentration of aqueous H_2 [$H_2(aq)$], shifting fermentation pathways. Increasing $H_2(aq)$ concentration was hypothesized to be required to maintain methanogen growth rates with increasing solids passage rate $(\mathbf{k}_{\mathbf{p}})$ based on steadystate microbial growth kinetics (Monod, 1949; Janssen, 2010). With methanogens limited by decreased pH, Janssen (2010) proposed that $H_2(aq)$ would also increase under these conditions because methanogens will lower their relative growth rate under current conditions given a decreased maximum growth rate (Janssen, 2010). Rather than assuming that decreased relative growth rate will simply decrease competitive assimilation of $H_2(aq)$ into methanogenesis and allow $H_2(aq)$ to increase, the kinetic model hypothesizes that low pH decreases the maximal growth rate, which will shift upward the $H_2(aq)$ concentration needed to main-

Received November 18, 2016.

Accepted March 7, 2017.

Current location: Perdue AgriBusiness, Salisbury, MD 21804.

²Corresponding author: firkins.1@osu.edu

WENNER ET AL.

tain relative growth rates. Increased concentrations of $H_2(aq)$ from either increased k_p or lowered pH were predicted to thermodynamically shift VFA production toward pathways that decrease net microbial production of H_2 , particularly the acetate pathways that would otherwise yield the most H_2 (Janssen, 2010). Decreasing total H_2 produced would then ultimately decrease total CH₄ production.

We proposed to use continuous culture fermentors as a model to measure concentration of $H_2(aq)$, CH_4 production, VFA production, and fiber digestibility as a screening and validation process for the model by Janssen (2010). We hypothesized that lower culture pH would inhibit methanogens, necessitating an increase in concentration of $H_2(aq)$, decreasing production of H_2 and CH_4 , and shifting VFA pathways toward a lower acetate-to-propionate ratio. Alternatively, increased solids k_p would increase methanogen relative growth rate (Monod, 1949; Janssen, 2010) and increase the concentration of $H_2(aq)$, thereby decreasing CH_4 production and again shifting VFA production pathways toward a lower acetate-to-propionate ratio. Because k_p and pH are presumed to affect methanogens via modes of action based on distinct growth or microbial activity inhibitions, we hypothesized that the combination of low pH and high k_p would not be additive (i.e., we would detect a significant statistical interaction).

MATERIALS AND METHODS

Experimental Design

The present study was conducted as a 2×2 factorial treatment arrangement in a Latin square design using dual-flow continuous culture fermentors (n = 4). Fermentors were fed once daily [40 g of DM; 50:50 concentrate:forage diet, 37.5% NDF, 19.5% NSC (starch plus water-soluble carbohydrate), and 15.4%CP]. The pelleted forage was an alfalfa meal pellet and the pelleted concentrate was composed of ground corn (36.9%), soybean hulls (40.4%), dried distiller's grains (10.0%), 48% CP soybean meal (9.1%), corn oil (1.8%),MgO (0.2%), and trace-mineralized salt (0.9%). The latter contained Na (36.6%), Cl (56.4%), Zn (3500 mg/ kg), Mn (2,800 mg/kg), Fe (1,750 mg/kg), Cu (350 mg/kg, I (70 mg/kg), and Co (70 mg/kg). The buffer also contained minerals that would support optimal microbial function. Treatments were control pH (**CpH**; diurnally ranging from 6.3 to 6.9) or low pH (LpH; 5.8 to 6.4) factorialized with solids k_p adjusted to be either low $(\mathbf{Lk}_{\mathbf{p}}; 2.5\%/h)$ or high $(\mathbf{Hk}_{\mathbf{p}}; 5.0\%/h)$. Liquid dilution was maintained at 7.0%/h to maintain constant infusion of buffer (for more accurate control of pH treatments) and to avoid a confounding dilution factor in $H_2(aq)$ expectations. Four experimental periods lasted 10 d each, with 3 d of sample collection at the end of each period. Buffer pH for CpH treatments was made according to Weller and Pilgrim (1974), with the addition of 0.4 g/L of urea, and determined to be constant at pH 6.8 under continuous bubbling with CO_2 . For the LpH treatment, we added H_3PO_4 to a concentration of 12.5 mM to decrease buffer pH to 6.4. Both buffers allowed a parallel diurnal shift in pH (see Supplemental Figure S1; https://doi.org/10.3168/ ids.2016-12332) to better reflect normal rumen function in vivo postfeeding (Cantalapiedra-Hijar et al., 2011). The CpH treatment allowed fluctuation of fermentor pH from 6.9 prefeeding to 6.3 approximately 8 h postfeeding, with a gradual return over the remaining 16 h of each experimental day. In a parallel response, the LpH treatment fluctuated between 6.4 prefeeding and 5.8 postfeeding. The fermentor pH was not allowed to drop below 5.8 to prevent long-term effects on protozoa (Dehority, 2010) that might confound treatment effects by decreasing protozoal metabolic activity and increasing bacterial abundance in replacement of lost protozoa.

Continuous Culture Operation

Dual-flow continuous culture fermentors (n = 4;Hoover et al., 1976), adapted for protozoa retention similar to Karnati et al. (2009), were used for this experiment. Average fermentor volume was 1.71 L (range: \pm 0.09 L), and total buffer dilution rate was maintained at 7.0%/h. At the beginning of each period, rumen contents were manually sampled from 2 runinally cannulated lactating Jersey cows fed a lactating diet, rapidly squeezed through 2 layers of cheesecloth, and then liquid was placed in insulated containers maintained at 39°C. Samples were pooled and inoculated into fermentors at 50% of fermentor volume. Sampling to inoculation interval averaged 30 min and did not exceed 40 min. Clarified rumen fluid (centrifuged at $15,000 \times g, 4^{\circ}C, 15 \text{ min}, \text{ and autoclaved}$) was used in a 1:20 dilution of buffer for the first 3 d of each period to better adapt protozoa to fermentors; in addition, filters retained protozoa except for efflux with the solids as described previously (Karnati et al., 2009; Wenner, 2016). Fermentor buffer was made according to Weller and Pilgrim (1974); 40 mg/dL of urea was included to prevent depression of microbial protein synthesis because fermentors also remove the effect of N recycling observed in vivo. Buffer was continuously bubbled with CO_2 for at least 1 d before use to maintain anaerobic conditions in the fermentors. Treatments were imposed after 2 d of adaptation to the fermentors following each experimental period's inoculation.

Download English Version:

https://daneshyari.com/en/article/5541745

Download Persian Version:

https://daneshyari.com/article/5541745

Daneshyari.com