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ABSTRACT

In a 2-step genomic system, genotypes of animals 
without phenotypes do not influence genomic predic-
tion of other animals, but that might not be the case 
in single-step systems. We investigated the effects of 
including genotypes from culled bulls on the reliability 
of genomic predictions from single-step evaluations. 
Four scenarios with a constant amount of phenotypic 
information and increasing numbers of genotypes from 
culled bulls were simulated and compared with respect 
to prediction reliability. With increasing numbers of 
genotyped culled bulls, there was a corresponding in-
crease in prediction reliability. For instance, in our sim-
ulation scenario the reliability for selection candidates 
was twice as large when all culled bulls from the last 4 
generations were included in the analysis. Single-step 
evaluations imply the imputation of all nongenotyped 
animals in the pedigree. We showed that this impu-
tation was increasingly more accurate as increasingly 
more genotypic information from the culled bulls was 
taken into account. This resulted in higher prediction 
reliabilities. The extent of the benefit from including 
genotypes from culled bulls might be more relevant for 
small populations with low levels of reliabilities.
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Short Communication

The genomic selection method proposed by Meuwis-
sen et al. (2001) consisted of a calibration step using 
information from genotyped animals with phenotypes 
and a prediction step for genotyped animals without 
phenotypes. This 2-step model can be formulated as 
a function of marker effects or of animal effects, with 
covariance structure described by the genomic rela-
tionship matrix G (VanRaden, 2008). The latter has 
been usually referred to as genomic BLUP. Legarra 

et al. (2009) and Christensen and Lund (2010) pro-
posed a single-step model [single-step genomic BLUP  
(ssGBLUP)] for genomic evaluation in which all avail-
able information from genotypes, phenotypes, and pedi-
gree is simultaneously used. This single-step model is 
expected to provide unbiased predictions even with se-
lection and nonrandom mating (Fernando et al., 2014).

Due to decreasing genotyping costs, the number of 
animals being genotyped has been constantly increas-
ing, which can lead to some computational challenges. 
This may be an issue, in particular, in single-step evalu-
ations in which the system sizes are at least as large 
as the number of animals in the pedigree. Attempts to 
overcome these challenges have been proposed. Misztal 
et al. (2014) introduced a method for approximating 
the inverse of G, which is needed in ssGBLUP. Lou-
renco et al. (2014) examined the effect of reducing the 
number of generations used in ssGBLUP and reported 
that truncating old data may reduce computational re-
quirements without decreasing reliability of prediction.

In a 2-step model, genotyped animals without pheno-
types do not take part in the calibration step and, there-
fore, have no influence on predicted breeding values of 
other animals. In practice, this would mean that once 
young genotyped bulls have been culled their genotypes 
can be neglected in further runs of a 2-step genomic 
evaluation system. If such culled genotyped animals 
can also be neglected in ssGBLUP without affecting 
the prediction reliability for other animals, this would 
help reducing computational costs. However, Legarra 
et al. (2014) suggested that such animals should not 
be eliminated in ssGBLUP because they may change 
pedigree relationships across other animals. The objec-
tive of the present study was to investigate whether, 
to which extent, and how genotyped animals without 
phenotypes can influence the reliability of prediction in 
ssGBLUP.

To investigate these questions we simulated data 
using the software QMSim (Sargolzaei and Schenkel, 
2009). Simulation was done in a way to mimic the 
structure and linkage disequilibrium found in the 
German-Austrian Fleckvieh population, as described in 
Plieschke et al. (2016). Briefly, a historical population 
of 2,000 unrelated animals with equal sex ratio was 
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generated and randomly mated for 2,500 generations. 
To create a linkage disequilibrium structure similar to 
the one observed in Fleckvieh, a bottleneck was intro-
duced in generation 2,501 by reducing the number of 
breeding animals to 150, which approximately corre-
sponds to the effective population size estimated for 
Fleckvieh (Pausch et al., 2013). Afterward the number 
of breeding animals was increased to 30,000 dams and 
1,500 sires. These were the founder animals (generation 
0) of the recent population, which was propagated for 
another 9 generations. In each of them, 15,000 female 
and 15,000 male offspring were produced. Generations 
were overlapping and in every generation 30% of the 
dams (n = 9,000) and 70% of the sires (n = 1,050) were 
replaced. These replacement ratios are quite similar to 
the situation observed in the real Fleckvieh population. 
Breeding animals were selected based on their EBV, 
which were calculated by QMSim. The reliabilities of 
these EBV were approximately 0.6, which resulted from 
the availability of information on parent average plus a 
single phenotypic record of the own animal. The simu-
lated genome consisted of 30 chromosomes with 100 
centimorgans. Single nucleotide polymorphisms were 
evenly distributed and QTL were randomly distributed 
across the genome (49,800 SNP and 900 QTL in to-
tal). To ensure sufficient quality of the genotypic data, 
SNP that significantly deviated from Hardy–Weinberg 
equilibrium (P < 10−5) and SNP with minor allele fre-
quency lower than 0.02 were excluded. After quality 
control, about 37,500 SNP and 700 QTL remained in 
the data set. True breeding values were simulated as 
the sum of QTL effects, and phenotypes were generated 
considering a heritability of 0.4. The polygenic nature 
of the trait was ensured by the relatively high number 
of QTL whose effects were drawn from a uniform dis-
tribution; we did this to prevent the occurrence of a few 
isolated large QTL effects. Despite the fact that QM-
Sim simulated phenotypes for all animals, we only used 
phenotypes of females to depict a situation observed in 
dairy cattle. Simulation was replicated 5 times and we 
also ran one repetition in which replacement animals 
were selected at random.

To show the influence of genotypes without pheno-
types, we assigned the simulated data to 4 different 
scenarios containing an increasing number of culled 
genotyped males. Phenotypic information did not 
change across scenarios and consisted of phenotypes of 
the cows from generations 3 to 8 (15,000 cows with 
phenotypes per generation, summing to a total of 
90,000 phenotypic records). The numbers of genotyped 
male animals from each generation for the 4 different 
scenarios are shown in Table 1.

The first scenario (S1) contained genotypes of all 
the bulls with daughter performance from generations 
5 to 7, of the top young bulls considered being selected 
but still without daughter performance from generation 
8, and of the young selection candidates from genera-
tion 9. The amount of genotypic information in this 
reference scenario depicts a typical situation in dairy 
genomic programs running 2-step evaluations, in which 
only genotypes of calibration bulls, genomic young 
bulls, and candidates are used. The second scenario 
(S2) additionally contained genotypes of all culled 
young bulls from generation 8. In the third scenario 
(S3), all culled bulls from generations 5 to 7 were also 
included. The fourth scenario (S4) was an alternative 
to S3 in which not all, but only the subset of the high-
est and lowest ranking bulls from generations 5 to 8 
were included. This was done to check if the addition of 
the lowest-ranking nonselected animals would make the 
additional genotype pool representative enough so that 
at least some computational demands could be saved.

We estimated genomic EBV for all scenarios with 
ssGBLUP using the software package MiX99 Release 
VIII/2015 (Lidauer et al., 2015) for solving the mixed 
model equations. The statistical model included a ran-
dom animal effect and an overall mean as fixed effect. 
The system of equations to solve is similar to Hender-
son’s mixed model equations for an animal model, ex-
cept that the covariance structure of the animal effect 
is described by a matrix H instead of the usual numera-
tor relationship matrix A. According to Aguilar et al. 
(2010) and Christensen and Lund (2010), the inverse of 
H has the following form:

Table 1. Description of the amount of genotypic information in the 4 scenarios

Generation

Number of genotyped males

Scenario 1 Scenario 2 Scenario 3 Scenario 41

5 1,050 1,050 15,000 1,050 + 1,050
6 1,050 1,050 15,000 1,050 + 1,050
7 1,050 1,050 15,000 1,050 + 1,050
8 1,050 15,000 15,000 1,050 + 1,050
9 3,000 3,000 3,000 3,000
Total 7,200 21,150 63,000 11,400
1The 1,050 highest and 1,050 lowest ranking bulls from generations 5 to 8.
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