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ABSTRACT

Phasing genotypes to haplotypes is becoming in-
creasingly important due to its applications in the 
study of diseases, population and evolutionary genet-
ics, imputation, and so on. Several studies have fo-
cused on the development of computational methods 
that infer haplotype phase from population genotype 
data. The aim of this study was to compare phasing 
algorithms implemented in Beagle, Findhap, FImpute, 
Impute2, and ShapeIt2 software using 50k and 777k 
(HD) genotyping data. Six scenarios were considered: 
no-parents, sire-progeny pairs, sire-dam-progeny trios, 
each with and without pedigree information in Holstein 
cattle. Algorithms were compared with respect to their 
phasing accuracy and computational efficiency. In the 
studied population, Beagle and FImpute were more ac-
curate than other phasing algorithms. Across scenarios, 
phasing accuracies for Beagle and FImpute were 99.49–
99.90% and 99.44–99.99% for 50k, respectively, and 
99.90–99.99% and 99.87–99.99% for HD, respectively. 
Generally, FImpute resulted in higher accuracy when 
genotypic information of at least one parent was avail-
able. In the absence of parental genotypes and pedigree 
information, Beagle and Impute2 (with double the 
default number of states) were slightly more accurate 
than FImpute. Findhap gave high phasing accuracy 
when parents’ genotypes and pedigree information were 
available. In terms of computing time, Findhap was 
the fastest algorithm followed by FImpute. FImpute 
was 30 to 131, 87 to 786, and 353 to 1,400 times faster 
across scenarios than Beagle, ShapeIt2, and Impute2, 
respectively. In summary, FImpute and Beagle were 
the most accurate phasing algorithms. Moreover, the 
low computational requirement of FImpute makes it 
an attractive algorithm for phasing genotypes of large 
livestock populations.
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INTRODUCTION

Haplotypes are combinations of alleles that are pres-
ent on each of 2 homologous chromosomes in a diploid 
individual. Some statistical methods exist for inferring 
haplotypes from observed genotypes. The inference of 
a haplotype from genotype data is called “phasing.” 
The importance of haplotype phasing is increasing with 
the availability of enormous amounts of genotype data 
generated by high-throughput technologies. Several 
applications of phasing include imputation of untyped 
genetic variation (Marchini et al., 2007; Browning and 
Browning, 2009; Li et al., 2010), interplay of genetic 
variation and phenotype (Tewhey et al., 2011), popula-
tion evolutionary history (Tishkoff et al., 1996), linkage 
disequilibrium mapping, calling genotypes in microar-
ray and sequence data (Kang et al., 2004; Li et al., 
2011), detecting genotyping errors (Scheet and Ste-
phens, 2008), inferring points of recombination (Kong 
et al., 2008), detecting recurrent mutation (Kong et 
al., 2008), signatures of selection (Sabeti et al., 2002), 
and modeling cis-regulation of gene expression (Tao et 
al., 2006). Recently, advances in genotyping technolo-
gies and computational approaches have improved the 
accuracy of haplotyping but experimental methods are 
expensive and time consuming. On the other hand, 
computational (in silico) phasing methods are inex-
pensive but may be time consuming. Computational 
methods are generally divided into family-based and 
population-based methods that use linkage information 
from close relatives and linkage disequilibrium informa-
tion from population, respectively (Li et al., 2009).

Family-based methods are mostly rule-based meth-
ods such as those proposed by Burdick et al. (2006) 
and Kong et al. (2008). Population-based methods are 
often based on the stochastic model, and their accu-
racy depends on sample size, marker density, genotype 
accuracy, allele frequency, ethnicity, and relatedness 
(Browning and Browning, 2011). Population-based ap-
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proaches can be highly accurate if high-density markers 
and large sample sizes are used but they are computa-
tionally intensive (Sargolzaei et al., 2014).

The task of phasing in livestock populations is some-
thing of a special case, because individuals exhibit much 
higher levels of relatedness and tend to share much 
longer stretches of chromosomes compared with indi-
viduals in the human population. Lander et al. (1987) 
used hidden Markov models (HMM) to construct pri-
mary genetic linkage maps of experimental and natural 
populations, which is implemented in Mapmaker. Cur-
rently, the most accurate methods use HMM to infer 
the haplotypes using linkage disequilibrium informa-
tion (Browning and Browning, 2009; Delaneau et al., 
2013; O’Connell et al., 2014). A method proposed by 
Kong et al. (2008) uses the surrogate parents to infer 
long haplotypes with high accuracy using Mendelian 
inheritance rules. Palin et al. (2011) proposed a model 
based on this approach called “systematic long-range 
phasing.” Meuwissen and Goddard (2010) proposed a 
combined family and population phasing approach in 
which family information is used by iterative peeling 
algorithm following by an approximation of identical-
by-descent probabilities. Sargolzaei et al. (2014) devel-
oped a rule-based method for phasing that exploited 
the relationships between individuals based on the fact 
that close relatives share longer haplotypes and distant 
relatives share shorter haplotypes.

Because of the relatively small effective population 
size and planned breeding in most livestock popula-
tions, a wide range of structured relationships between 
individuals is usually observed. For example, large 
half-sib families are common in livestock. Assessing the 
performance (i.e., accuracy and computational require-
ments) of alternative phasing algorithms for livestock 
populations is important before performing haplotype 
phasing in research or applied settings. There exist a 
few investigations on the performance of algorithms for 
phasing genotypes in livestock, especially using large 
genotypes and pedigreed data sets. Therefore, the 
objective of this study was to investigate the phasing 
accuracy and computing requirements of 5 previously 
published statistical algorithms for inferring haplotypes 
from genotype data in a large Holstein cattle popula-
tion, which were implemented in Beagle (Browning and 
Browning, 2009), Findhap (VanRaden et al., 2013), 
FImpute (Sargolzaei et al., 2014), Impute2 with both 
default and high-accuracy settings (Howie et al., 2009), 
and ShapeIt2 with both default and high-accuracy 
settings and the new duoHMM algorithm for scenar-
ios with pedigree information (Delaneau et al., 2013; 
O’Connell et al., 2014).

MATERIALS AND METHODS

Data Sets

To provide a comprehensive assessment of the accu-
racy of algorithms, 6 different scenarios (3 data subsets 
with or without pedigree) that vary in the extent of 
the relatedness between individuals from the North 
American Holstein genotype database were analyzed. 
The scenarios are summarized in Table 1. The data set 
was provided by the Canadian Dairy Network (CDN, 
Guelph, ON, Canada), contained 2,495 and 118,946 
animals genotyped with Illumina BovineHD (HD) and 
BovineSNP50 (50k) BeadChips (Illumina Inc., San 
Diego, CA), respectively. The North American Holstein 
database contains individuals registered in Canada and 
the United States. Quality control was performed on 
50k genotypes by the Council on Dairy Cattle Breeding 
(CDCB, Bowie, MD). Details of quality control mea-
sures are given in Wiggans et al. (2009). A total of 
45,187 SNP were retained for analysis after filtering. 
Genotyped animals that were born from 2012 to 2015 
with both parents also genotyped comprised the valida-
tion set. Genotypes of parents were used to determine 
phase of heterozygous loci in validation animals, for 
which parents carried opposing homozygous genotypes. 
These inferred phases were considered highly accurate 
and were used to assess haplotype accuracy from dif-
ferent algorithms. The validation set for the 50k panel 
included 9,266 dairy cattle. Influential genotyped ani-
mals, which had more than 40 offspring and were not 
parents of animals in validation sets, were included in 
all 6 scenarios for the 50k panel as influential animals 
(Table 1). Also, 1,916 animals with HD genotypes that 
were not parents of validation animals were considered 
influential animals for the HD panel (Table 1). The per-
centage of influential animals that were grandparents of 
validation animals was 0.00 and 1.59% for the 50k and 
HD data sets, respectively. The average pedigree-based 
relationship between validation and influential animals 
that had pedigree information were 0.13 (ranged from 
0.02 to 0.62) and 0.11 (ranged from 0.01 to 0.46) for 
the 50k and HD data sets, respectively. No-parents 
scenarios included both the validation animals and the 
influential animals; the sire-progeny pair scenarios in-
cluded validation animals, influential animals, and sires; 
and sire-dam-progeny trio scenarios included validation 
animals, influential animals, sires, and dams (Table 1).

The validation set for the HD panel included 284 
dairy cattle that were genotyped with the HD panel. 
Parents of validation animals had HD or imputed HD 
genotypes from 50k available. Imputation from 50k 
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