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1. Introduction 

The amount of data on the Internet increases every day, and therefore the task of selecting and classifying 
relevant information becomes all the more difficult. Text summarization systems can automate the task of 
generating a summary from a large text in a considerable amount of time. Traditionally researchers looked at 
designing statistical models for achieving this.  More recently, attention has turned to a variety of machine 
learning algorithms that can build models automatically. 

A summary consists of the main topics in one or more documents as a short and concise readable text. 
Summaries are generated from a single document [1] or multiple documents. The summary formed from more 
than one documents is called multi-document summarization. A ‘query-biased’ summarization [6] provides 
information to user on queries. Topic summarization deals with the generation of topics along with providing 
the most informative sentences. The present work focuses on summary refinement. Summarization makes the 
document more readable by making only the information [9] content provided to the user. Human generated 
summaries are expensive and machine generated summaries are not up to the mark. Several efforts are made 
by researchers in order to generate good, informative summaries.  

The rest of this paper is organized as follows. Section 2 reviews the background and related work. Section 
3 provides an overview of the proposed work summary refinement model. Section 4 discusses the conducted 
evaluation and results. Section 5 concludes the paper. 

2. Background work 

One of the very first works in automatic text summarization was done by Luhn et al in 1958, demonstrates 
research work done in IBM, focused on technical documents [11]. Luhn proposed that the ’frequency of word’ 
proves to be a useful measure in determining the significance factor of sentences. Many approaches are 
already proposed on text summarization [4], based on the model they used the results vary. Some use to 
assign numeric weights to index terms based on the frequency of the term occurring in the document. The 
automatic extracting system [2] assign numerical weights to text sentence based on the weights assigned to 
certain machine-recognizable characteristics or clues. Some use to assign weights based on the semantic 
similarity measurement.  

Extracting key sentences from a document to form a summary can be done by measuring the relevance of 
sentences using fuzzy-rough sets [15]. A text summarization system that produces extractive summaries that 
utilize a well-defined set of features that represent the sentences in a text was proposed. 

3. A Summary refinement model 

System generated summaries are prone to contain similar sentences that convey similar meaning. Such 
similar sentences would have been the candidate sentences of the summary due to their importance in features. 
This leads to redundancy in summaries and thereby increases the length of the summaries. Some researchers 
have proposed to refine a system-generated summary using filtering sentences or phrases before they could 
become part of the summary. We have taken up this challenge and suggested a way of refining extractive 
summaries by removing redundant sentences.The proposed approach makes use of Binomial distribution for 
measuring Context Based Indexing [10]. By giving the weights to the topical terms, the sentence similarity 
weight can be assigned and a graph can help to eliminate redundant sentences to give a refined summary. The 
similarity values are used to construct a graph, showing the connection between sentences. The sentences with 
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