A Quick Reference on Metabolic Alkalosis

Daniel S. Foy, MS, DVM^{a,*}, Helio Autran de Morais, DVM, PhD^b

KEYWORDS

Bicarbonate
Hypochloremia
Base deficit
Alkalosis
Hypoalbuminemia

KEY POINTS

- Metabolic alkaloses are characterized by an increase in bicarbonate concentration, base excess, and pH, and a compensatory increase in carbon dioxide pressure.
- Normal bicarbonate concentration is approximately 19 to 23 mEq/L in dogs and 17 to 21 mEq/L in cats, whereas normal base excess is approximately 0 to -5 in dogs and cats.
- Hypochloremic alkalosis is the most common cause of metabolic alkalosis and is most commonly secondary to vomiting of stomach contents or diuretic administration.

BICARBONATE AND BASE EXCESS: METABOLIC ALKALOSIS—QUICK REFERENCE

- Metabolic alkaloses are characterized by an increase in HCO_3^- concentration and base excess, increase in pH, and a compensatory increase in Pco_2 (Fig. 1).
 - Metabolic alkalosis is identified by an increase in HCO₃⁻ concentration or base excess.
 - Base excess is the amount of acid needed to return blood pH to normal. A positive base excess is associated with metabolic alkalosis.
 - $\circ\,$ There is a compensatory hypoventilation that increases $P{\rm co}_2$ and minimizes the change in pH:
 - In dogs, for each 1 mEq/L increase in HCO_3^- , Pco_2 increases by ~ 0.7 mm Hg.
 - Respiratory compensation for metabolic alkalosis is similar in cats.
- Metabolic alkalosis can result from increase in the strong ion difference (SID; the difference between all strong cations and strong anions in blood; simplified SID = [Na⁺] + [K⁺] [Cl⁻]) or decrease in nonvolatile weak acids.

* Corresponding author.

E-mail address: dfoy1@midwestern.edu

Vet Clin Small Anim ■ (2016) ■-■ http://dx.doi.org/10.1016/j.cvsm.2016.10.007 0195-5616/16/© 2016 Elsevier Inc. All rights reserved.

vetsmall.theclinics.com

Conflict of Interest: No commercial or financial conflicts of interest; no funding source to declare.

^a College of Veterinary Medicine, Midwestern University, 5715 West Utopia Road, Glendale, AZ 85308, USA; ^b Lois Bates Acheson Veterinary Teaching Hospital, Magruder Hall, Oregon State University, 700 Southwest 30th Street, Corvallis, OR 97331, USA

Fig. 1. Algorithm for evaluation of patients with acid-base disorders.

ANALYSIS

- Indications: Measurement of base excess and HCO₃⁻ concentration is useful in severely ill pets at risk of developing alkalosis (eg, vomiting) or in animals that have a condition known to be associated with metabolic alkalosis or an increase in total carbon dioxide (total CO₂) concentration.
 - A blood gas analysis is necessary to determine if the high total CO₂ is caused by a metabolic alkalosis or a compensation for respiratory acidosis.

Box 1 Principal causes of metabolic alkalosis
SID alkalosis
Concentration alkalosis (recognized by \Uparrow [Na ⁺]) Pure water loss Water deprivation Hypotonic fluid loss Vomiting Diarrhea
Hypochloremic alkalosis Vomiting of stomach content ^a Diuretic administration (loop diuretics and thiazides) ^a NaHCO ₃ administration
Chloride-resistant hypochloremic alkalosis Hyperadrenocorticism Hyperaldosteronism
Miscellaneous Marked potassium deficiency
Nonvolatile ion buffer alkalosis
Hypoalbuminemic alkalosis Liver failure Protein-losing nephropathy Protein-losing enteropathy
^a Most important causes in small animal practice.

Download English Version:

https://daneshyari.com/en/article/5544615

Download Persian Version:

https://daneshyari.com/article/5544615

Daneshyari.com