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The ability of some viruses to establish latently infected chronic

reservoirs that escape to immune control becomes a major

roadblock that impedes the cure of these infections. Therefore,

new alternatives are needed to pursuit the eradication of viral

persistent infections. Gene silencing technologies are in

constant evolution and provide an outstanding sequence

specificity that allows targeting any coding sequence of

interest. Here we provide an overview of the development of

gene silencing technologies ranging from initially RNA

interference to the recently developed CRISPR/Cas9 and their

potential as new antiviral strategies focusing on the eradication

of HIV.
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Introduction
Over the last two decades, technologies enabling modifi-

cation of gene expression, either by direct inhibition of

gene expression by RNA interference (RNAi) or by

genomic modification at DNA level (i.e., zinc finger

nucleases (ZFNs), transcription activator like-effector

nucleases (TALENs) and RNA-guided gene editing with

CRISPR/Cas9) have contributed to an enormous progress

in molecular biology (Figure 1), and both strategies are

currently under study for the treatment of a broad range of

infectious and non-infectious diseases. Ongoing clinical

trials using RNAi and genome editing tools as potential

anti-human immunodeficiency virus (HIV) therapy aim at

generating cells resistant to infection, in an attempt to

mimic the effect observed in the often called Berlin
patient, an HIV+ individual with apparent eradication

of the virus after receiving a stem cell transplant from

a CCR5 D32 donor, and the unique reported case of an

HIV-1 functional cure [1��]. Here, we summarize the

most important milestones accomplished and the puta-

tive applications of gene silencing and genome editing

technologies as an alternative therapy for HIV

eradication.

Challenges of RNA interference for
therapeutic applications
One of the most attractive applications of the RNAi

approach is the feasibility of its delivery into whole

organisms or tissues/organs to target disease related pro-

teins considered as ‘non-druggable’ [2,3]. Therapeutic

applications of RNAi have been challenged by several

limitations specially related to the existence of nonspe-

cific off-target effects, including the induction of innate

immune responses; RNA stability; and the efficiency of

delivery [4]. Some of these limitations can be overcome

with an optimal design and/or the introduction of chemi-

cal modifications: modification of the 20 position of the

ribose moiety (20-O-methyl, LNA, 20-deoxy) avoids Toll

like receptor (TLR) recognition and subsequent innate

immune system stimulation in response to RNAi,

whereas modification of the RNAi seed region limits

off-target effects and degradation by nucleases [5,6].

Nowadays, most of the efforts are centered into achieve-

ment of a safe, efficient and targeted delivery of RNAi to

cells and tissues using low toxicity non-viral vectors such

as cationic lipids and polymers, cholesterol, liposomes,

antibodies and nanoparticle formulations [7,8].

RNA interference as an antiviral therapy: the case of HIV

The availability of genome wide siRNAs libraries enable

large-scale, high-throughput RNAi screens which have

identified key factors involved in the life cycle of HIV and

other viruses, such as influenza virus and human hepatitis

C virus (HCV), among others [9]. These findings may

help uncover new potential therapeutic targets and

expand our knowledge of the interplay between cellular

factors and viral infection. RNAi also represents a prom-

ising technique to promote sequence-specific degradation

and silencing of viral RNA [10], as (i) it avoids off-target

effects of host genes; (ii) siRNA presents lower toxicity;

(iii) it may be suitable for long-treatment therapy; and (iv)

may be combined with other antiviral therapies.

Several approaches have used RNAi-based technology to

target viral or host genes at all stages of HIV replication,

such as viral entry, reverse transcription, integration and

transcription [11�,12,13]. Nevertheless, these promising
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results of RNAi-based technology obtained in HIV in
vitro assays have not been efficiently translated to the

clinical setting, mostly due to problems associated with

the use of RNAi for long-term viral infections. A

complication is the emergence of RNAi-resistant strains

[14]. This mutational escape can be avoided by targeting

highly conserved regions of the HIV genome, or

combining multiple viral target sites and/or host factors

required for the HIV infection and replication [15]. For

instance, multiple shRNAs delivered with a lentiviral

vector have been used to target CCR5 and CXCR4

co-receptors, providing resistance to infection [16,17].

In addition, HIV replication can be restricted by targeting

cellular cofactors involved in viral integration such as

LEDGF/p75, Chaperonin or Importin 7 [18]; viral

transcription such as P-TEFb, SPT5, and ZNRD1

[19,20]; or nuclear entry such as TNPO3 [21], although

none of them seems a suitable candidate since modifying

their normal gene expression may affect essential cellular

functions.
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Timeline of milestones for RNAi and genome editing technologies.

Above, milestones in the RNAi field, colored in grey. Below, milestones in the CRISPR-Cas9 (green), and ZFN and TALENS (orange) technologies.
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