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Collaborative filtering has emerged as a popular way of making user recommendations, but with the increasing
sizes of the underlying databases scalability is becoming a crucial issue. In this paper we focus on a recently pro-
posed probabilistic collaborative filtering model that explicitly represents all users and items simultaneously in
the model. This model class has several desirable properties, including high recommendation accuracy and prin-
cipled support for group recommendations. Unfortunately, it also suffers from poor scalability. We address this
issue by proposing a scalable variational Bayes learning and inference algorithm for these types of models. Em-
pirical results show that the proposed algorithm achieves significantly better accuracy results than other
straw-men models evaluated on a collection of well-known data sets. We also demonstrate that the algorithm
has a highly favorable behavior in relation to cold-start situations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Recommender systems have become a well-established technology
to help users cope with vast amounts of information. This is achieved
by only presenting to the users the information which is deemed most
relevant. Over the last years the diversity of the domains in which rec-
ommender systems have been successfully applied has increased signif-
icantly and includes movies, books, news, and products in general.

Recommender systems are typically grouped into two categories:
content-based systemsmake item recommendations by combining con-
tent descriptions of the items in questions with a preference model of
the user (e.g. inferred using previously rated items). On the other
hand, collaborative filtering systems provide recommendations based
on the ratings of other users with similar preferences. The two types
of systems exhibit different characteristics; collaborative filtering sys-
tems typically enjoy a greater flexibility in terms of the types of items
that can be recommended whereas content-based systems are usually
less susceptible to cold-start problems.

Collaborative filtering systems are often further sub-divided into
model-based andmemory-based [4] methods, although combinations of
the two have also been proposed [29]. Memory-based systems rely on a
distance measure to estimate user similarity, whereas model-based ap-
proaches learn a model of the user's preferences, which is subsequently
used for making predictions. The earliest model-based approaches used
a multinomial mixture model [10] for either grouping the users into

user groups or items into item-categories. More recently, uniformmodels
have been proposed that treat users and items equivalently and represent
them jointly in the samemodel. An example of such amodel is the prob-
abilistic latent variable model proposed by Langseth and Nielsen [20].

Themodel described in [20] bears some resemblances with relational
probabilistic models [13] in that it explicitly combines all users and items
directly in the model [34,33,12]. More specifically, the model is a special
type of conditional linear Gaussian model [21], where each item and
user is represented by a collection of abstract latent variables encoding
intrinsic properties about the user/item in question. The rating assigned
to item i by user p is in turn modeled as a linear Gaussian distribution
conditioned on the corresponding latent user/item representations. This
joint representation of users and items allows the model to take advan-
tage of all the user/item information available when making recommen-
dations. Not only does this result in high-quality recommendations, as
documented in [20], but it also supports a well-founded and principled
way of making group recommendations [7,25].

In order to learn the probabilistic latent variable models, Langseth
and Nielsen [20] proposed an Expectation–Maximization (EM) algo-
rithm tailored to the specific model class. Unfortunately, the algorithm
requires the calculation of the full covariance matrix for all the latent
variables representing the users and items. Consequently, the algorithm
does not scale to larger data sets.

In this paper we address the scalability problem by proposing ap-
proximate learning and inference algorithms based on a variational
Bayes approach [1,3]. The algorithms employ a (generalized) mean-
field approximation of the variational distribution, which ensures that
the complexity of the learning algorithm grows linearly in the number
of data points/ratings. Furthermore, we show that the model fits within
the general class of statistical query models that in turn supports an
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efficient use of the MapReduce framework [8,6]; hence the algorithms
are easily parallelizable and can exploit distributed architectures. We
empirically evaluate the proposed algorithms using several well-
known data sets and demonstrate that the algorithm obtains results
that are significantly better than what is obtained by a collection of
straw-men methods. Finally, we analyze the performance of the meth-
od under cold-start conditions [19].

The remainder of the paper is structured as follows: In Section 2 we
provide background information and describe the probabilistic latent
variable model by Langseth and Nielsen [20]. Section 3 describes the
variational Bayes based learning algorithm (with detailed derivations
included in the Appendix A) and in Section 4 we present the empirical
results. We conclude the paper in Section 5 and outline directions for
future research.

2. A latent model for collaborative filtering

2.1. Bayesian network

A Bayesian network (BN) is a probabilistic graphical model that de-
fines a compact representation of a joint probability distribution by
exploiting and explicitly encoding conditional independence properties
among the variables. The specification of a BN over a collection of vari-
ables {X1,…, Xn} consists of two parts: a qualitative part and a quantita-
tive part. The qualitative part corresponds to an acyclic directed graph
G ¼ V; Eð Þ , where the nodes V represent the variables {X1, …, Xn}
through a one-to-one mapping, and the edges E specify the direct de-
pendencies between the variables. For ease of exposition, we shall
refer to nodes and variables interchangeably.

We shall describe the relations between the variables in a Bayesian
network using graph terminology. Thus, the nodes whose outgoing
edges intersect a node/variable Xi are called the parents of Xi, denoted
πXi

, and the nodes to which there exists an edge emanating from Xi

are called the children of Xi. If there is a directed path from a node Xi

to a node Xj, then Xj is said to be a descendant of Xi. Together the
edges in the graph encode the conditional independence assumptions
in the Bayesian network. Specifically, a node Xi is conditionally indepen-
dent of its non-descendants given its parents.

The quantitative part is defined by a collection of conditional proba-
bility distributions or density functions s.t. each node is assigned exactly
one probability distribution conditioned on its parents. In the remainder
of this paperwe shall assume that all variables are continuous. In partic-
ular, a variable Xi with parents πXi is assumed to follow a conditional
linear Gaussian distribution

f xijπxi

� �
¼ N μ i þwT

i πxi
;σ i

� �
;

i.e., the mean value is given as a weighted linear combination of the
values of the parent variables whereas the variance is fixed. The under-
lying conditional independence assumptions encoded in the BN allow
us to calculate the joint probability function using the chain rule:

f x1;…; xnð Þ ¼ ∏
n

i¼1
f xijπxi

� �
:

With linear Gaussian distributions assigned to all the variables it fol-
lows that the joint distribution is a multivariate Gaussian distribution.
The inverse of the covariance matrix (also called the precision matrix)
for this multivariate distribution directly reflects the independencies
defined by the BN; the entry defined by a pair of variables is zero if
and only if the two variables are conditionally independent given the
other variables in the network.

2.2. A latent variable model

The collaborative filtering method proposed in [20] relies on a
Bayesian network representation that provides a joint model of all
items, users, and their ratings. Before presenting the details of the
model, we shall first introduce some notation.

Wewill denote the matrix of ratings by R, which is of size # U × #M.
Here # U is the number of users and #M is the number of items that are
rated. R is a sparse matrix, meaning that it contains a considerable
amount of missing values (more than 99% missing observations is quite
common). The observed ratings are either realizations of ordinal vari-
ables (discrete variables with ordered states, e.g., “Dislike”, “Neutral”,
“Like”) or real numbers. In the following we will consider only continu-
ous ratings encoded by real numbers, and assume that ratings given as
ordinal variables have been translated into a numeric scale.

We use p as the index of an arbitrary person using the system, and i
is the index of an item that can be rated. Consequently, R(p, i) is the
rating that person p gives item i. Next, we will use δ(p, i) as an indicator
function to show whether or not person p has rated item i. Specifically,
δ(p, i) = 1 if the rating exists and δ(p, i) = 0 otherwise. Furthermore,
I pð Þ is the set of items that person p has rated, i.e., I pð Þ= ∪i:δ(p,i)≠0{i},
and similarly P ið Þ ¼ ∪p:δ p;ið Þ≠0 pf g is the set of persons that have rated
item i. Lowercase letters are used to signify that a random variable is
observed, so r(p, i) is the rating that p has given item i (that is,
δ(p, i) = 1 in this case). Finally, we let r denote all observed ratings
(the part of R that is not missing).

When doingmodel-based collaborative filtering from a general per-
spective we look for a probabilistic model that for any item i and user p
defines a probability distribution over R(p, i) given model parameters ρ
and observed ratings r. Given such a probability distribution, we can
make recommendations based on the expected rating or the median
rating for that distribution.

The probabilisticmodel that is proposed in [20] defines a joint distri-
bution over all ratings by introducing abstract latent variable represen-
tations of both the items and the users. Specifically, each item i is
represented by the random variablesMi and each user p is represented
by the random variablesUp. In amovie context onemay for example in-
terpret the different dimensions ofmi as representing different features
ofmovie i such as towhat extend themovie uses awell-known cast and
the amount of explicit violence in the movie. Similarly, the dimensions
of up can be interpreted as corresponding to different user characteris-
tics. Hence, since the variables are continuous, the value up,j of the jth
variable Up,j can be interpreted as representing to what extent user p
has the characteristicsmodeled by variable j. This alsomeans that rather
than assigning a user to a single “user group”, the continuous variables
Up,j encode to what extent a user belongs to a certain group.1 A priori
we assume that Up∼N 0; Ið Þ , for 1 ≤ p ≤ #U, and Mi∼N 0; Ið Þ , for
1 ≤ i ≤ # M.

The rating assigned to item i by user p is modeled by assuming the
existence of a linear mapping from the space describing users and
items to the numerical rating scale:

R p; ið Þj Mi ¼ mi;Up ¼ up

n o
¼ vTpmi þwT

i up þ ϕp þ ψi þ ϵ: ð1Þ

The rating in Eq. (1) is thus determined as an additive combination
of user p's preferences vp for (or attitude towards) the features describ-
ing item i and item i's dispositionwi towards the different user groups.2

The constantsϕp and ψi in Eq. (1) can be interpreted as representing the
average rating of user p and the average rating of item i (after compen-
sating for the user average), respectively. Furthermore, ε represents
“sensor noise”, i.e., the variation in the ratings themodel cannot explain.

1 See [20] for anempirical investigation into thepossible semantics of the abstract latent
variable representations.

2 Note that the relative importance of the movie features and the user group can be
encoded in the weight vectors vp and wi.
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