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A B S T R A C T

Context: Several studies have shown that the relationship between mean plasma glucose (MPG) and glycated
haemoglobin (HbA1c) may vary across populations. Especially race has previously been referred to shift the
regression line that links MPG to HbA1c at steady-state (Herman & Cohen, 2012).
Objective: To assess the influence of demographic and disease progression-related covariates on the intercept of
the estimated linear MPG-HbA1c relationship in a longitudinal model.
Data: Longitudinal patient-level data from 16 late-phase trials in type 2 diabetes with a total of 8927 subjects
was used to study covariates for the relationship between MPG and HbA1c. The analysed covariates included age
group, BMI, gender, race, diabetes duration, and pre-trial treatment. Differences between trials were taken into
account by estimating a trial-to-trial variability component.
Participants: Participants included 47% females and 20% above 65 years. 77% were Caucasian, 9% were Asian,
5% were Black and the remaining 9% were analysed together as other races.
Analysis: Estimates of the change in the intercept of the MPG-HbA1c relationship due to the mentioned
covariates were determined using a longitudinal model.
Results: The analysis showed that pre-trial treatment with insulin had the most pronounced impact associated
with a 0.34% higher HbA1c at a given MPG. However, race, diabetes duration and age group also had an impact
on the MPG-HbA1c relationship.
Conclusion: Our analysis shows that the relationship between MPG and HbA1c is relatively insensitive to
covariates, but shows small variations across populations, which may be relevant to take into account when
predicting HbA1c response based on MPG measurements in clinical trials.

1. Introduction

In type 2 diabetes mellitus it is essential to keep glucose levels in the
normo-glycaemic range to prevent hypo- and hyperglycaemia, and
related complications. Glycaemic control is commonly maintained by
monitoring fasting plasma glucose (FPG). In early clinical drug devel-
opment and short-term clinical trials plasma glucose is the preferred
biomarker. Plasma glucose has a fast turnover rate and it is thus
possible to assess drug effects within hours or days. However, plasma
glucose is also highly variable and sensitive to glucose intake.

Furthermore, since plasma glucose values can vary considerably from
day to day, it is not a reliable biomarker for assessing long-term efficacy
in clinical trials. For sustained glucose control, the preferred biomarker
is glycated haemoglobin (HbA1c), which is considered the primary
efficacy endpoint by regulators (EMA, May 2012; FDA, February 2008)
and several studies have explored the relationship between HbA1c and
clinical outcomes, e.g. cardiovascular outcomes (Meigs et al., 1996).
HbA1c is insensitive to daily fluctuations due to food intake or
circadian variation, which makes it the gold standard biomarker in
clinical drug development within diabetes. However, the turnover rate
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of HbA1c is slow, which makes it necessary to perform longer-term
clinical trials to assess treatment effects adequately at steady-state.
Thus it would be of value to have a method to obtain the longitudinal
translation of glucose levels from a short trial to HbA1c levels at end of
treatment in a long trial. Furthermore, a translation of glucose to HbA1c
values within the same trial could be useful. Such a translation needs to
account for factors affecting variability in steady-state MPG-HbA1c
ratio. These include: RBC life-span, which is influenced by age, effects
on glucose transport into RBCs (e.g. by insulin therapy), and factors
affecting the glucose-independent component of HbA1c (Lledó-García
et al., 2013).

The relationship between plasma glucose and HbA1c has previously
been described using both empirical methods and semi-mechanistic
models. In particular, the relationship between HbA1c and plasma
glucose at steady state has been established through linear regression
models in many studies (Rohlfing et al., 2002; Liang et al., 2010;
Nathan et al., 2008; Ladyzynski et al., 2014). Several mathematical
models have also been developed, based on physiological mechanisms
such as glycosylation and life span of erythrocytes (Mortensen et al.,
1984; Lledó-García et al., 2013; Kjellsson et al., 2013; Ladyzynski et al.,
2014). Such models are often developed in order to understand and/or
describe the underlying biological processes behind the observed data.
A number of other quantitative models describing the relationship
between plasma glucose and HbA1c (Møller et al., 2013; Hamrén et al.,
2008; Landersdorfer and Jusko, 2008) have been developed based on
clinical trial data. These models, like the regression methods, offer a
framework for prediction of HbA1c based on clinical trial data.

Although some models (regression and semi-mechanistic) have been
developed using large populations of subjects, they have generally not
been assessed and compared across different trials and types of
treatments, except in the case of the model proposed by Møller et al.
(2013). This is an indirect response model which has been shown to
accurately predict HbA1c at end-of-trial based on early glucose and
HbA1c data from the trial. Therefore, this model can be used as a tool
for optimization of late-stage clinical drug development within dia-
betes. However, in order to be able to use the model across different
populations, it is important to know how the relationship between MPG
and HbA1c varies across populations. To this end we have made an
analysis of covariate effects using a large database of 8927 subjects in
the context of the longitudinal model proposed by Møller et al. (2013).
The covariates we have analysed are: age group, BMI, gender, race,
diabetes duration, and pre-trial treatment. To our knowledge, no
attempt has previously been made to analyse the impact of covariates
on the glucose-HbA1c relationship in the context of a longitudinal
model. Several studies have analysed the impact of covariates using
regression methods, and it has been shown that even though HbA1c
values vary little over time within the same individual, they vary
considerably between individuals (Yudkin et al., 1990; Meigs et al.,
1996). In particular, effects of race on the relationship between HbA1c
and glucose have been described. Differences in HbA1c levels between
races have been recognized for many years, but it has previously been
attributed to differences in access to medical care and quality of
treatment (Herman and Cohen, 2012). However, the significantly
higher HbA1c values in some race groups are now mostly considered
to be explained by true biological variation, in factors such as
haemoglobin glycosylation or red blood cell survival. While the
existence of a race effect is widely recognized, the effects of other
covariates are more debated.

2. Materials and methods

In this study we used data from 16 late-phase clinical trials (phase
III/IV) in subjects with type 2 diabetes (see Tables 1 or 2 for
ClinicalTrials.gov identifiers) with a total of 8927 subjects to study
the impact of covariates on the relationship between MPG and HbA1c.
The selected trials included treatment arms with oral antidiabetic

drugs; GLP-1 analogues; various insulin treatments including basal
insulins and basal/bolus insulin combinations; as well as combinations
of these treatments. All trials were conducted in accordance with the
ethical principles in the Declaration of Helsinki and approved by the
participating institution's ethics committees.

The trials were required to have a duration of 6 months or longer
and to include 24 h glucose profiles (such as 7–10 point self-measured
plasma glucose profiles, for study details see Table 2) as well as HbA1c
sampling at least three times during these 26 weeks. Only trials with
HbA1c sampling at baseline were included, and MPG values were
calculated as the weighted averages from the glucose profiles using
AUC0–24 h/24 h. The subjects included in the trials were type 2 diabetes
patients, and only completers of the trials were included in the analysis
set. Demographics and baseline characteristics for the subjects included
in the analysis are summarised by trial in Tables 1 and 2, respectively.

Using a longitudinal model, covariates were analysed on the
intercept in the MPG-HbA1c steady-state relationship. In brief, the
model was an indirect response model for HbA1c with a first order
elimination rate constant kout and a formation rate given by kin ∗
(MPG + β) (Møller et al., 2013). At steady state, the MPG-HbA1c
relationship in this model is given by HbA1c = (kin / kout) ∗
(MPG + β), i.e. a linear relationship with a slope given by kin/kout
and an intercept given by β ∗ kin / kout. The values of kin and kout were
fixed to 0.081%/(week ∗ mmol/L) and 0.226 week−1, respectively,
based on the original publication (Møller et al., 2013). All other model
parameters were re-estimated and the results are available in the
Supplemental material. Because kin and kout were fixed, covariates
were only analysed on the intercept parameter β. This is equivalent to
investigating covariate effects on the intercept in the linear relationship
between steady-state MPG and steady-state HbA1c. Covariates could
also affect the slope in this relationship, but this would correspond to
changes in glycosylation dynamics, which was not the focus of the
current study. A more detailed description of the model is published
elsewhere (Møller et al., 2013).

The covariate model was developed using a full model approach
with inclusion of all covariates in one step (Hu et al., 2011). The
NONMEM software (version 7.1.2, ICON Development Solutions,
Ellicott City, MD) (Beal et al., 2009) with first-order conditional
estimation (FOCE) was used. Analysed covariates included age group,
BMI (continuous), gender, race, diabetes duration (continuous), and
pre-trial treatment, and the covariate effects were estimated on an
additive scale, meaning that each effect can be interpreted directly as a
change in HbA1c at steady state for a given MPG. Differences between
trials were taken into account by also estimating an effect for each trial.
To avoid convergence issues in the subsequent likelihood profiling, the
trial effects in the final model were fixed to their estimated values, and
the covariate effects were re-estimated. This did not change the point
estimates for any of the covariate effects. Goodness-of-fit plots for the
final model are available in the Supplemental material. Four sensitivity
analyses were conducted: one with no trial effects; one with additional
terms for interaction between the pre-trial treatment and diabetes
duration effects; and two univariate sensitivity analyses with no pre-
trial treatment effects and no diabetes duration effects, respectively.
The results of the sensitivity analyses are available in the Supplemental
material.

Using the point estimates from the longitudinal model and 95%
confidence intervals determined based on likelihood profiling, a forest
plot showing changes in HbA1c at steady state for a given MPG was
created to visualize the association with the investigated covariates.
The results from the pharmacometric analysis were also checked using
steady-state regression analysis for each covariate in turn. In these
regression analyses, a common slope was estimated, and only the
intercept was allowed to differ between covariate categories. For the
continuous covariates; diabetes duration and BMI, the data was divided
into groups for the regression analysis. For diabetes duration, the data
was divided into 3 groups; below 2 years, between 2 and 20 years and
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