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Influence diagrams have become a popular tool for representing and solving complex decision-making
problems under uncertainty. In this paper, we focus on the task of building probability models from expert
knowledge, and also on the challenging and less known task of constructing utility models in influence
diagrams. Our goal is to review the state of the art and list some challenges. Similarly to probability
models, which are embedded in influence diagrams as a Bayesian network, preferential/utility
independence conditions can be used to factor the joint utility function into small factors and reduce
the number of parameters needed to fully define the joint function. A number of graphical models have
been recently proposed to factor the joint utility function, including the generalized additive
independence networks, ceteris paribus networks, utility ceteris paribus networks, expected utility
networks, and utility diagrams. Similarly to probability models, utility models can also be engineered from
a domain expert or induced from data.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Decision-making problems based on uncertain information are
composed of four different elements: (1) a sequence of decisions to be
made; (2) a set of uncertain variables described by a probability
model; (3) decision maker's preferences for the possible outcomes
described by a utility model; and (4) some information constraints on
what uncertainties can and cannot be observed before a decision has
to be made. All of these elements can be graphically represented by
influence diagrams (IDs), see [48]. Nowadays, IDs have become a
popular and standardmodeling tool for decision-making problems. As
pointed out in a recent special issue of the journal Decision Analysis
devoted to IDs, these models “command a unique position in the
history of graphical models” [77].

IDs are directed acyclic graphs with three types of nodes: (1) deci-
sion nodes (rectangular) representing decisions to bemade; (2) chance
nodes (oval or elliptical) representing uncertainties modeled by
probability distributions; and (3) value nodes (diamond-shaped)
without children (direct successors), representing the (expected)
utilities that model decision-maker's preferences. The arcs have
different meanings depending upon which node they are directed

to: the arcs to chance nodes or the value nodes indicate probabilistic
dependence and functional dependence, respectively, while the arcs
pointing at a decision node indicate the information known at the time
of making that decision. The former are called conditional arcs while
the latter are called informational arcs. Informational arcs are related to
the information constraints mentioned above.

Therefore we can distinguish two levels in an ID: qualitative
and quantitative. The qualitative (or graphical) level has a require-
ment: there must be a directed path comprising all decision nodes.
This ensures the definition of a temporal sequence (total order)
of decisions and it is called sequencing constraint. As a consequence,
IDs have the “no-forgetting” property: the decision maker remem-
bers the past observations and decisions. At the quantitative level,
an ID specifies the domains of all decision and chance nodes.
A conditional probability table is attached to each chance node
consisting of conditional probability distributions, one for each
state of its parents (direct predecessors). The utility functions (real-
valued functions) quantify the decision maker's preferences for
outcomes and will be attached to value nodes. They are defined
over the states of the value node's parents. If several value nodes
are present, then each represents an additive factor of the joint
utility function.

Fig. 1 shows an example of the graphical part of an ID. D1 and D2

are decision nodes; A, C and R are chance nodes; and υ1, υ2, and υ3 are
value nodes. υ1 is a function of the states of D1, υ2 is a function of the
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states of D2 and A, and υ3 is a function of the states of D2 and C. The
joint utility function is the pointwise sum of υ1, υ2 and υ3. As in a
Bayesian network, the arcs directed to chance nodes like R mean
that the conditional probability attached to R is given by P(R|D1, A).
Finally, since there are no informational arcs directed to D1, nothing is
known when a decision at D1 has to be made. The informational arcs
(D1, D2) and (R, D2) directed to D2 mean that at the time a decision at
D2 has to be made, we know the outcome of R and the decision made
at D1. The informational arc (D1, D2) is also called a no-forgetting arc,
and it can be deduced from the fact that there is a directed path
from D1 to D2.

Evaluating an ID means computing a strategy with the maximum
expected utility. This strategy consists of a policy for each decision
node. A policy for decision nodeDi is a function δDi

that associates each
state of Di's parents with a state dj of Di, that results in the maximum
expected utility:

δDi
: xpa Dið Þ→dj ð1Þ

The evaluation algorithms take advantage of the independencies
among the ID variables. The dependencies and independencies appear
naturally during the construction of the model and are represented by
arcs and absence of arcs respectively. The absence of an arc among
two variables represents their mutual independence. Therefore the
removal of a link in order to simplify the model may lead to a wrong
picture of the decision problem under examination. As it happens
while building any model, a tradeoff between simplicity and
expressivity is needed.

Olmsted [70] described a method to solve IDs. Shachter [83]
published the first ID evaluation algorithm. After that, several
algorithms based on variable elimination strategies or on clique-
trees approaches may be now used to solve IDs [22,50,62,85,86,94].
Computational issues related to ID evaluation are beyond the scope of
this paper. Some critical difficulties and their solutions are discussed
and exemplified in [4,37], where a large ID, called IctNeo, models
neonatal jaundice management for an important public hospital in
Madrid.

IDs have an enormous potential as a tool for modeling uncertain
knowledge. The process of building an ID itself provides a deep
understanding of the problem, and ID outputs are remarkably
valuable. Given a specific configuration of variables, an ID yields the
best course of action. But ID responses are not limited to providing
optimal strategies for the decision-making problem. Inferred posterior
distributions may be employed to generate diagnosis outputs
(probabilities of each cause). IDs may also automatically generate
explanations of their proposals as a way to justify their reasoning [30].

The domain expert may formulate a more difficult query, without
specifying all the variables required to determine the optimal
decision, leading to imprecise responses that should be refined if we

want the decision maker to be satisfied [29]. Reasoning in the reverse
direction, assuming that the final results of the decisions are known,
the ID can be used to generate probabilistic profiles that fit these final
results (answering questions like “which kind of patients receive this
specific treatment?”). Also, the computation of the expected value of
information have shown to play a vital role in assessing the different
sources of uncertainty [84].

The aforementioned special issue of Decision Analysis devoted to
IDs is a sign of the lively interest in IDs. Boutilier [10] discusses the
profound impact that IDs have had on artificial intelligence. As a
professional decision analyst, Buede [15] reports on the value of IDs
for tackling challenging real decision problems and considers IDs
almost as indispensable as a laptop computer. Pearl [77] recognizes
the significant relevance of IDs but he underscores some limitations.
First, due to their initial conception with emphasis on subjective
assessment of parameters, econometricians and social scientists
continued using traditional path diagrams where parameters were
inferred from the data itself. Second, artificial intelligence researchers,
with little interaction with decision analysis researchers at that time
(early 1980s), established conditional independence semantics
through the d-separation criterion developing competitive computa-
tional tools. Thus, although IDs are informal precursors to Bayesian
networks, the former had a milder influence on automated reasoning
research than the latter. Finally, Pauker and Wong [75] consider that
IDs have disseminated slowly in the medical literature ([74] and [66]
are two papers analyzing the use of IDs for structuring medical
decision problems), compared to the dominating model of decision
trees, the reasons remaining unclear.

In a separate paper, we concentrate on the qualitative graphical
structure of a decision problem including information constraints
[5]. Here, we concentrate on the construction of a utility model and
review some lesser known issues about constructing probability
models. In constructing a probability model, we need to identify the
relevant chance variables, the qualitative structure of conditional
independencies between the chance variables, and the quantitative
parameters of the joint probability distribution of all chance variables
that respects the conditional independence relations among the
variables. This part of an ID is also called a Bayesian network (BN).
When we have a large set of variables, constructing a BN model of the
uncertainties can be a challenge.

One way to construct a BN model is by knowledge engineering
using a domain expert. The domain expert can identify the relevant
uncertainties, the structure of conditional independencies among the
variables, and finally the numerical parameters of the joint distribu-
tion. To facilitate the knowledge engineering, we describe the SRI
protocol developed by the Decision Analysis group at Stanford
University. We also describe some methods for reducing the number
of parameters needed to fully describe a joint probability distribution.
If the conditional distribution of a binary chance variables has n
parents, say with 2 states each, then the number of parameters
needed is 2n. However, if there are no interactions among the n
parents, we can reduce the number of parameters of the conditional
distribution to o(n). We describe some techniques such as divorcing
parents and noisy-OR models that have been proposed in the
literature.

Another way to induce a BN model is from data. In the last two
decades, there has been an explosion of techniques in the machine
learning community to learn BN models from data and these
techniques are rather well-known and will not be reviewed here. In
practice, a combination of expert knowledge and data are used to
construct a BN model.

Construction of a utility model is as challenging as constructing a
probabilitymodel, if not more. Again, this can be donewith the help of
a domain expert or from a data set, assuming one is available. The task
consists of describing the objectives in terms of a hierarchy of sub-
objectives, defining a measurement scale for each sub-objective, and

Fig. 1. An influence diagram.
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