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Purpose: Develop a minimal mechanistic model based on in vitro–in vivo extrapolation (IVIVE) principles to
predict extent of passive tubular reabsorption. Assess the ability of the model developed to predict extent of
passive tubular reabsorption (Freab) and renal excretion clearance (CLR) from in vitro permeability data and
tubular physiological parameters.
Methods:Model system parameters were informed by physiological data collated following extensive literature
analysis. A database of clinical CLR was collated for 157 drugs. A subset of 45 drugs was selected for model
validation; for those, Caco-2 permeability (Papp) data were measured under pH 6.5–7.4 gradient conditions
and used to predict Freab and subsequently CLR. An empirical calibration approach was proposed to account for
the effect of inter-assay/laboratory variation in Papp on the IVIVE of Freab.
Results: The 5-compartmentalmodel accounted for regional differences in tubular surface area andflow rates and
successfully predicted the extent of tubular reabsorption of 45 drugs for which filtration and reabsorption were
contributing to renal excretion. Subsequently, predicted CLR was within 3-fold of the observed values for 87% of
drugs in this dataset, with an overall gmfe of 1.96. Consideration of the empirical calibration method improved
overall prediction of CLR (gmfe = 1.73 for 34 drugs in the internal validation dataset), in particular for basic
drugs and drugs with low extent of tubular reabsorption.
Conclusions: The novel 5-compartment model represents an important addition to the IVIVE toolbox for
physiologically-based prediction of renal tubular reabsorption and CLR. Physiological basis of themodel proposed
allows its application in future mechanistic kidney models in preclinical species and human.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Renal excretion is considered a major route of elimination for many
drugs (e.g., metformin, acyclovir and digoxin) (Morrissey et al., 2013;
Tucker, 1981; Varma et al., 2009). Prediction of human renal excretion
clearance (CLR) prior to commencing first-in-man clinical studies
currently relies on in silicomethods based on physico-chemical proper-
ties (Dave and Morris, 2015a; Ito et al., 2013; Paine et al., 2010; Varma
et al., 2009) and/or allometric scaling (Huh et al., 2011; Paine et al.,
2011). Despite wide use of these methods, they do not provide
mechanistic insight into the underlying processes contributing to
renal excretion and have limited ability to account for any changes in
the renal physiology. Mechanistic understanding of various pharmaco-
kinetic (PK) processes has become a necessary part of model-
informeddecisionmaking for special populations (e.g., obese or patients
with renal impairment), as well as devising dosage regimens for use in
such populations (Jadhav et al., 2015). The mechanistic approach
becomes even more important when certain sub-groups (‘complex’
patients) exhibit various co-morbidities which make clinical studies
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very difficult, if not impossible (Rostami-Hodjegan, 2015). Thus, under-
standing various elements of renal excretion may offer advantages
through prediction of potential differences in various patients under
the framework of physiologically-based pharmacokinetic (PBPK)
modelling (Zhao et al., 2011). In addition, many currently developed
drugs undergo extensive active tubular secretion (Morrissey et al.,
2013) for which prediction of CLR by mechanistic PBPK models
(Felmlee et al., 2013; Neuhoff et al., 2013; Posada et al., 2015) is consid-
eredmore promising in comparisonwith in silico and allometric scaling.

While efforts have beenmade at predicting renalmetabolic clearance
from in vitro data (Gill et al., 2012, 2013), successful prediction of CLR
using in vitro–in vivo extrapolation (IVIVE) remains a challenge. In
order to quantitatively and mechanistically predict CLR using IVIVE,
each of the contributing processes (glomerularfiltration, active secretion
and tubular reabsorption, Eq. (1)) must be considered independently.

CLR ¼ CLR;filt þ CLR; sec
� �� 1� Freabð Þ ð1Þ

Filtration clearance (CLR,filt) is readily predicted from glomerular fil-
tration rate (GFR) and fraction unbound in plasma (fu,p). In cases where
both secretion and reabsorption contribute to elimination, confidence in
prediction of the fraction reabsorbed (Freab) is equally important as the
accurate prediction of renal secretion clearance (CLR,sec). Whereas
reabsorption is predominantly a passive process, secretion is actively
mediated by a range of drug transporters expressed in the kidney
such as OAT1, OAT3, OCT2 and MATE2-K (Morrissey et al., 2013).

A number of mathematical models concerning physiological functions
of the kidney (e.g., urine concentratingmechanism, solute transport regu-
lation) exist (Layton, 2011; Weinstein, 2015), but may not be readily
adaptable for use in renal PBPKmodels. Further, thesemodelswere devel-
oped based on physiological and experimental data in rat kidney (e.g.,
from micropuncture studies) for which analogous data in human are
lacking. Recently, a static model for the prediction of CLR using in vitro
permeability data fromLLC-PK1 cellmonolayerswas proposed and its per-
formance was assessed against a relatively small and restricted dataset
(Kunze et al., 2014). Themodel consideredboth active secretion and tubu-
lar reabsorption, and used the proximal tubule surface area as the IVIVE
scaling factor for the apparent permeability (Papp) data. However, the
remaining tubular regions (e.g., collecting duct), which may contribute
to passive tubular reabsorption, were not considered (Kunze et al., 2014).

A dynamic kidney model that facilitates IVIVE of renal transporter
kinetics and passive permeability has recently been reported (Neuhoff
et al., 2013). Although very promising, paucity of data on relevant
physiological scaling factors and some of the system data (e.g., transport-
er abundance) limit model application and validation. In addition,
adequate consideration of the heterogeneity of the renal tubule, impor-
tant for prediction of passive permeability clearance in each tubular
segment, is lacking. Current reports on the use of physiologically-based
kidney models for ‘bottom-up’ prediction of renal drug disposition
often rely on clinical plasma and/or urine drug concentration data for
derivation/optimisation of transporter kinetic parameters and their
scaling factors (Dave and Morris, 2015b; Felmlee et al., 2013; Hsu et al.,
2014; Watanabe et al., 2011), analogous to the trends seen with predic-
tion of hepatic clearance (Galetin, 2014; Zamek-Gliszczynski et al., 2013).
For example, IVIVE of human CLR,sec from in vitro uptake data obtained in
precision cut kidney slices required an empirical scaling factor of 10 in
order to obtain agreement between predicted and observed values
(Watanabe et al., 2011). In an analogous manner OAT3 maximal uptake
rate (Vmax) was optimised using plasma concentration–time profiles to
refine prediction of pemetrexed CLR using a PBPK kidney model, and
account for differences in transporter expression and activity between
the in vitro transfected cell system and in vivo (Posada et al., 2015).

The aim of this study was to develop a mechanistic model to predict
extent of passive tubular reabsorption from in vitro permeability data
and tubular physiological parameters. The second aim was to assess
the ability of the model developed to predict CLR for a range of drugs

for which filtration or reabsorption appeared to be the dominant
mechanisms contributing to CLR. The physiological aspects of the
model were informed from the data collated following an extensive
literature analysis. A database of in vivo CLR and corresponding Freab
was collated for 157 drugs. For a subset of 45 selected drugs, in vitro
permeability data were generated in Caco-2 cell monolayer under
pH 6.5–7.4 gradient conditions. Subsequently, the tubular reabsorption
model developed was applied to predict regional and overall passive
tubular reabsorption for the selected drug subset (n=45). An empirical
calibration approach was proposed to account for the effect of inter-
assay/laboratory variation in Papp on the IVIVE of Freab using a set of
reference drugs as calibrators (n = 11). The novel mechanistic 5-
compartment model developed enables prediction of the contribution
of passive tubular reabsorption to CLR in a physiologically-based
manner and is seen as an integral part of complex kidney models.

2. Materials and methods

2.1. Clinical data collation

CLR data were collated from literature sources and, wherever
possible, data were acquired from primary studies. Further data were
gathered from review papers where sufficient details on the trial design
had been reported. In addition, data from unpublished clinical studies
available at https://www.clinicaltrials.gov were also included in the
analysis. Where CLR values were not reported in the study, Eqs. (2) and
(3) were used to calculate CLR from published urinary excretion and
plasma concentration data. Reports of a drug not being detected
unchanged in urine, or having “negligible” CLR, were not considered for
collation. Data available in graphical formatwere digitised using GetData
Graph Digitizer v2.25 (http://getdata-graph-digitizer.com/).

CLR ¼ Amount excreted in urine 0�t

AUC0�t
ð2Þ

CLR ¼ Urinary excretion rate
Cp;midpoint

ð3Þ

where AUC0-t represents the area under the plasma concentration–time
profile, and Cp,midpoint represents the plasma concentration at the
midpoint of the urinary collection interval from which the urinary
excretion rate was measured.

Only CLR data acquired following administration of a drug to healthy
adult subjects were included in the database. Data fromdiseased, obese,
elderly or alcoholic subjects were excluded, but exclusion criteria based
on sex or ethnicity were not applied. Data acquired after co-
administration of multiple drugs (e.g., from drug–drug interaction
studies)were generally excluded. An exceptionwasmade for trimetho-
prim and sulfamethoxazole because these drugs are generally co-
administered and there is a paucity of data following single drug
administration. These studies were considered acceptable as there
have been no reports in the literature of interactions at the level of
renal excretion between sulfamethoxazole–trimethoprim. Aminoglyco-
sides (amikacin, gentamicin, isepamicin, netilmicin, sisomicin and
tobramycin) were excluded. These drugs are reported to accumulate
in proximal tubule cells, possibly due to endocytotic luminal uptake
mediated by the megalin receptor, causing nephrotoxicity (Moestrup
et al., 1995; Nagai and Takano, 2004; Schmitz et al., 2002). Drugs with
enantiomer specific renal excretion were excluded, an example being
cetirizine (Strolin et al., 2008).

In contrast to previous databases (Varma et al., 2009), CLR data in
this database are reported as absolute values, i.e.without normalisa-
tion for body weight or body surface area. Normalisation was not
considered as the majority of literature studies (N75%) reported ab-
solute CLR values and substantial portion of studies did not report ei-
ther body weight or body surface area of subjects. In addition, recent
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