
Denormalization strategies for data retrieval from data warehouses

Seung Kyoon Shina,*, G. Lawrence Sandersb,1

aCollege of Business Administration, University of Rhode Island, 7 Lippitt Road, Kingston, RI 02881-0802, United States
bDepartment of Management Science and Systems, School of Management, State University of New York at Buffalo,

Buffalo, NY 14260-4000, United States

Available online 20 January 2005

Abstract

In this study, the effects of denormalization on relational database system performance are discussed in the context of using

denormalization strategies as a database design methodology for data warehouses. Four prevalent denormalization strategies

have been identified and examined under various scenarios to illustrate the conditions where they are most effective. The

relational algebra, query trees, and join cost function are used to examine the effect on the performance of relational systems.

The guidelines and analysis provided are sufficiently general and they can be applicable to a variety of databases, in particular to

data warehouse implementations, for decision support systems.

D 2004 Elsevier B.V. All rights reserved.

Keywords: Database design; Denormalization; Decision support systems; Data warehouse; Data mining

1. Introduction

With the increased availability of data collected

from the Internet and other sources and the implemen-

tation of enterprise-wise data warehouses, the amount

of data that companies possess is growing at a

phenomenal rate. It has become increasingly important

for the companies to better manage their data ware-

houses as issues related to database design for high

performance are receiving more attention. Database

design is still an art that relies heavily on human

intuition and experience. Consequently, its practice is

becoming more difficult as the applications that data-

bases support become more sophisticated [32].Cur-

rently, most popular database implementations for

business applications are based on the relational model.

It is well known that the relational model is simple but

somewhat limited in supporting real world constructs

and application requirements [2]. It is also readily

observable that there are indeed wide differences

between the academic and the practitioner focus on

database design. Denormalization is one example that

0167-9236/$ - see front matter D 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.dss.2004.12.004

* Corresponding author. Tel.: +1 401 874 5543; fax: +1 401 874

4312.

E-mail addresses: shin@uri.edu (S.K. Shin)8

mgstand@mgt.buffalo.edu (G.L. Sanders).
1 Tel.: +1 716 645 2373; fax: +1 716 645 6117.

Decision Support Systems 42 (2006) 267–282

www.elsevier.com/locate/dsw



has not received much attention in academia but has

been a viable database design strategy in real world

practice.

From a database design perspective, normalization

has been the rule that should be abided by during

database design processes. The normal forms and the

process of normalization have been studied by many

researchers, since Codd [10] initiated the subject. The

objective of normalization is to organize data into

normal forms and thereby minimize update anomalies

and maximize data accessibility. While normalization

provides many benefits and is indeed regarded as the

rule for relational database design, there is at least one

major drawback, namely bpoor system performanceQ
[15,31,33,50]. Such poor performance can be a major

deterrent to the effective managerial use of corporate

data.

In practice, denormalization techniques are fre-

quently utilized for a variety of reasons. However,

denormalization still lacks a solid set of principles and

guidelines and, thus, remains a human intensive

process [40]. There has been little research illustrating

the effects of denormalization on database performance

and query response time, and effective denormalization

strategies. The goal of this paper is to provide

comprehensive guidelines regarding when and how

to effectively exercise denormalization. We further

propose common denormalization strategies, analyze

the costs and benefits, and illustrate relevant examples

of when and how each strategy can be applied.

It should be noted that the intention of this study is

not to promote the concept of denormalization.

Normalization is, arguably, the mantra upon which

the infrastructure of all database systems should be

built and one of the foundational principals of the field

[20,25]. It is fundamental to translating requirement

specifications into semantically stable and robust

physical schema. There are, however, instances where

this principal of database design can be violated or at

least compromised to increase systems performance

and present the user with a more simplified view of the

data structure [39]. Denormalization is not necessarily

an incorrect decision, when it is implemented wisely,

and it is the objective of this paper to provide a set of

guidelines for applying denormalization to improve

database performance.

This paper is organized as follows: Section 2

discusses the relevant research on denormalization

and argues the effects of incorporating denormaliza-

tion techniques into decision support system data-

bases. Section 3 presents an overview of how

denormalization fits in the database design cycle and

develops the criteria to be considered in assessing

database performance. Section 4 summarizes the

commonly accepted denormalization strategies. In

Section 5, relational algebra, query trees, and join

cost function approach are applied in an effort to

estimate the effect of denormalization on the database

performance. We conclude in Section 6 with a brief

discussion of future research.

2. Denormalization and data warehouses

2.1. Normalization vs. denormalization

Although conceptual and logical data models

encourage us to generalize and consolidate entities to

better understand the relationships between them, such

generalization does not guarantee the best performance

but may lead to more complicated database access

paths [4]. Furthermore, normalized schema may create

retrieval inefficiencies when a comparatively small

amount of data is being retrieved from complex

relationships [50]. A normalized data schema performs

well with a relatively small amount of data and

transactions. However, as the workload on the database

engine increases, the relational engine may not be able

to handle transaction processing with normalized

schema in a reasonable time frame because relatively

costly join operations are required to combine normal-

ized data. As a consequence, database designers

occasionally trade off the aesthetics of data normal-

ization with the reality of system performance.

There are many cases when a normalized schema

does not satisfy the system requirements. For exam-

ple, existing normalization concepts are not applicable

to temporal relational data models [9] because these

models employ relational structures that are different

from conventional relations [29]. In addition, rela-

tional models do not handle incomplete or unstruc-

tured data in a comprehensive manner, while for many

real-world business applications such as data ware-

houses where multiple heterogeneous data sources are

consolidated into a large data repository, the data are

frequently incomplete and uncertain [19].

S.K. Shin, G.L. Sanders / Decision Support Systems 42 (2006) 267–282268



Download English Version:

https://daneshyari.com/en/article/554856

Download Persian Version:

https://daneshyari.com/article/554856

Daneshyari.com

https://daneshyari.com/en/article/554856
https://daneshyari.com/article/554856
https://daneshyari.com

