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a b s t r a c t

On-farm assessment of mixed pasture nutrient concentrations is important for animal production and
pasture management. Hyperspectral imaging is recognized as a potential tool to quantify the nutrient
content of vegetation. However, it is a great challenge to estimate macro and micro nutrients in hetero-
geneous mixed pastures. In this study, canopy reflectance data was measured by using a high resolution
airborne visible-to-shortwave infrared (Vis–SWIR) imaging spectrometer measuring in the wavelength
region 380–2500 nm to predict nutrient concentrations, nitrogen (N) phosphorus (P), potassium (K), sul-
fur (S), zinc (Zn), sodium (Na), manganese (Mn) copper (Cu) and magnesium (Mg) in heterogeneous
mixed pastures across a sheep and beef farm in hill country, within New Zealand. Prediction models were
developed using four different methods which are included partial least squares regression (PLSR), kernel
PLSR, support vector regression (SVR), random forest regression (RFR) algorithms and their performance
compared using the test data. The results from the study revealed that RFR produced highest accuracy
(0.55 6 R2

CV 6 0.78; 6.68% 6 nRMSECV 6 26.47%) compared to all other algorithms for the majority of nutri-
ents (N, P, K, Zn, Na, Cu and Mg) described, and the remaining nutrients (S and Mn) were predicted with
high accuracy (0.68 6 R2CV 6 0.86; 13.00% 6 nRMSECV 6 14.64%) using SVR. The best training models were
used to extrapolate over the whole farm with the purpose of predicting those pasture nutrients and
expressed through pixel based spatial maps. These spatially registered nutrient maps demonstrate the range
and geographical location of often large differences in pasture nutrient values which are normally not mea-
sured and therefore not included in decision making when considering more effective ways to utilized
pasture.
� 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

Pasture nutrient composition is a key determinant of animal
productivity and farm profitability and is influenced by a large
number of environmental factors such as soil type (chemical and
physical properties), water availability, fertilizer inputs, altitude,
slope angle, slope aspect, land use, climate, and farm management
decisions (White and Hodgson, 2000). Nutrient maps provide data
needed to understand how these factors interact and create oppor-
tunities to assess the impact of management changes. These data
allow the establishment of benchmarks and support adoption of
precision agriculture practices. Furthermore, nutrient maps can
be used to monitor how animal interactions such as stocking

density and grazing behavior might influence urine and dung,
nutrient acquisition by plants (Pasari et al., 2014).

The assessment of pasture quality is typically carried out by
analyzing the concentrations of various nutrients through a series
of methodologies in the laboratory; however, they are labor-
intensive, costly, time-consuming, and limited to point sampling.
Laboratory and field spectrometers can be used for analyzing nutri-
ent concentrations of vegetation, these methods allow a number of
nutrients to be determined from a single sample; however, they
are often limited to point to paddock scale (Phillips et al., 2006;
Kawamura et al., 2009; Pullanagari et al., 2012). Airborne hyper-
spectral imaging (AHI) measures reflectance spectra as images
enabling us to map vegetation biochemistry from pixel, to pad-
dock, farm, catchment and regional scales (Beeri et al., 2007). These
different data resolutions have the potential to be used for a wide
variety of land uses.
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Vegetation canopy chemistry, such as pigments, cellulose, lig-
nin, nitrogen (N), fiber, phosphorus (P), have been successfully
quantified by AHI (Curran et al., 1997; Knox et al., 2011;
Skidmore et al., 2010). This quantification is based on the vegeta-
tion absorption features corresponding to biochemistry present
across the spectrum caused by elemental and molecular interac-
tions (Curran, 1989; Kokaly et al., 2009). Since the development
of the first airborne imaging spectrometer Airborne Visible/
Infrared Imaging Spectrometer (AVIRIS) designed by Jet Propulsion
Laboratory (JPL), National Aeronautics and Space Administration
(NASA) (Green et al., 1998), hyperspectral imaging or imaging
spectroscopy has become widespread in many disciplines from
mineral exploration to biochemical mapping of vegetation (Goetz
et al., 1985). Consequently, with advancement of the technology
substantial progress has been made towards the development of
full spectral range high fidelity airborne imagining spectrometers
by commercial and research institutes (Asner et al., 2012;
Schaepman et al., 2015). AHI data is not constrained by spatial res-
olution and provides greater flexibility in monitoring the local or
minor changes on the surface. Although intensive research has
been conducted to determine nutrient concentrations and quality
attributes of vegetation using field spectroradiometers (Mutanga
and Skidmore, 2007; Pullanagari et al., 2012; Ramoelo et al.,
2013), limited attention is being given to airborne imaging due
to its limited availability and complexity in data analysis.
Skidmore et al. (2010) successfully mapped forage quality, protein
and polyphenol concentrations for trees and grass, of savannahs
using AHI (HyMap, Australia). Similarly, Knox et al. (2011) con-
ducted an experiment to map forage nutrients, such as nitrogen,
phosphorus and fiber, during dry the season in an African savannah
system using the Carnegie Airborne Observatory (CAO alpha imag-
ing spectrometer). Axelsson et al. (2012) verified the possibility of
predicting biochemical properties (N, P, K, Ca, Mg and Na) of man-
groves in the Berau Delta, Indonesia, using airborne imaging spec-
trometer (HyMap, Australia). Beeri et al. (2007) also used HyMap to
successfully map forage quality and quantity across two grassland
regions for the Northern Great Plains, USA. Among those biochem-
icals only N was estimated satisfactorily and the other properties
were poorly explained. Many attempts have been made to map N
variation across landscapes and ecosystems, though other nutri-
ents which are also essential for vegetation growth have received
less attention. Canopy reflectance is a function of vegetation opti-
cal properties, biophysical, such as leaf area index (LAI) and leaf
orientation and biochemical attributes, such as nitrogen level,
water content, as well as soil background, illumination conditions,
viewing geometry, and atmospheric scattering (Asner et al., 1998;
Curran, 1989; Jacquemoud et al., 1992). Despite these confounding
effects on canopy reflectance, statistical techniques have been used
to derive canopy biochemistry.

Multispectral and hyperspectral sensors collect reflectance
information in multiple bands, where multispectral sensors collect
a smaller number of broad bands that are often used together to
form vegetation indices, e.g. the Normalized Difference Vegetation
Index (NDVI), the simple ratio (SR), the optimized soil adjusted
vegetation index (OSAVI) (Mutanga and Skidmore, 2004). Hyper-
spectral sensors collect spectral data in few hundreds or thousands
of narrow bands which offer the possibility to investigate opti-
mized narrow band vegetation indices by exploring all possible
band combinations. Optimized narrow band indices have shown
improved performance over broad band indices for extracting vari-
ables of interest from vegetation (Mutanga and Skidmore, 2004).
However, the models based on vegetation indices are case often
specific and lack the ability to be generally applied due to environ-
mental conditions (Verrelst et al., 2015). Conversely, multivariate
regression approaches have been proposed to utilize the informa-
tion from the full spectrum. Extensive research has been conducted

to explore the multivariate statistical relationships between in-situ
biochemistry and reflectance values of vegetation (Mutanga et al.,
2005; Phillips et al., 2013; Pullanagari et al., 2012). In early remote
sensing studies the stepwise multiple linear regression (SMLR)
method was typically used to extract biochemical information
from spectra (Kokaly, 2001; Mutanga et al., 2005). However these
methods can lead to over-fitting because they cannot effectively
handle the multicollinearity that exists in the data which is com-
mon in hyperspectral remote sensing data (Grossman et al.,
1996). Alternatively partial least squares regression (PLSR) method
reduces the spectral data into fewer orthogonal components, and
yields robust and accurate models hence it is now widely used in
spectroscopy and remote sensing studies (Atzberger et al., 2010;
Pullanagari et al., 2012; Phillips et al., 2013). However, when the
relationship between vegetation variables and reflectance data is
complex and non-linear, PLSR is not the optimum choice for hyper-
spectral data analyses (Arenas-Garcia and Camps-Valls, 2008).
Advanced non-linear regression methods (also known as machine
learning approaches) have recently been applied for the retrieval
of biophysical variables such as LAI (Arenas-Garcia and Camps-
Valls, 2008; Verrelst et al., 2012) and classification studies (Omer
et al., 2015). These achived signficant improvement of accuracy
over traditional methods (Verrelst et al., 2012), and may improve
predictions of macro and micro nutrients in pasture. We aimed
to evaluate these methods of analysis. Specifically, based on the lit-
erature, we chose to compare partial least squares regression
(PLSR), kernel PLSR, support vector regression (SVR) and random
forest regression (RFR) to determine prediction accuracy of macro
and micro nutrient concentrations for New Zealand pastures.

2. Materials and methods

2.1. Study area and ground sampling

This study investigated the variability of pasture nutrient con-
centrations on a 600 ha hill country farm, situated in the North
Island of New Zealand (Fig. 1). The study area comprised of 80 sam-
pling locations (Fig. 1) used as ground calibration sites which were
identified based on a stratified random design. The locations were
equally distributed over the farm to cover the range of physical
conditions present. A stratified sampling framework was created
using a combination of GIS (geographic information system) layers
in ArcGIS software. These layers were slope angle, slope aspect and
soil types. The study area was categorized based on the slope cat-
egories of 0–8�; 8–16�; 16–25� and 25�<, the aspect categories of
North, South, East and West, and the soil types of allophanic,
brown, podzol, recent and oxidic. The slope and aspect values were
obtained from 8 meter spatial resolution DEM (digital elevation
model) provided by Land Information New Zealand (https://data.
linz.govt.nz/). Soil data was obtained from S-map project (http://
www.landcareresearch.co.nz/databases/smap.asp). Each location
being selected from all group combinations and constrained by
accessibility. Each of the 80 sampling sites had 5 sample plots, of
0.5 � 0.5 m chosen randomly. These 400 sample points were geo-
referenced with Real-Time Kinematic–Global Positing System
(RTK GPS). The chemical results of the 5 plots were averaged and
considered as one reading in the data analysis. It is assumed that
these conditions represent a diverse array of canopy chemistry
and botanical composition. The pastures are mainly mixed species;
perennial ryegrass (Lolium perenne L.), white clover (Trifolium
repens L.) and a less dominant proportion of brown top (Agrostis
capillaries) and crested dogs tail (Cynosurus cristatus). The presence
of a wide range of vegetation types and vegetation dynamics
introduced significant heterogeneity. In addition, the specific
spatial pattern of grazing animals considerably influenced the
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