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a b s t r a c t

Sparse manifold clustering and embedding (SMCE) adaptively selects neighbor points from the same
manifold and approximately spans a low-dimensional affine subspace, but it does not explicitly give a
projection matrix and encounters the out-of-sample problem. To overcome this drawback, we propose
a new dimensionality reduction method, called sparse manifold embedding (SME), based on graph
embedding and sparse representation for hyperspectral image (HSI). It utilizes the sparse coefficients
of affine subspace to construct a similarity graph and preserves this sparse similarity in embedding space.
Furthermore, we try to make full use of the prior label information to design a novel supervised learning
method termed sparse discriminant manifold embedding (SDME). SDME not only inherits the merits of
the sparsity property of affine subspace but also boosts the compactness of intra-manifold, which
achieves discriminating features and further improves the classification performance of HSI.
Experiments on two real hyperspectral data sets (Indian Pines and PaviaU) show the benefits of the
proposed SME and SDME methods.
� 2015 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

Hyperspectral image (HSI) is acquired by different imaging
spectrometer sensors (e.g. EO-1 Hyperion, HyMap and AVIRIS),
which provides detailed spectral information about objects in hun-
dreds of spectral bands (Zhang et al., 2013). The information in HSI
possesses the superior discrimination among similar ground cover
classes (Chen et al., 2013). However, the large number of bands is
prone to cause the curse of dimensionality, which reduces the dis-
criminating power of ground cover as the dimensionality increases
in a fixed number of training samples (Shao and Zhang, 2014).
Therefore, it is an urgent issue to greatly reduce the number of
bands with no appreciable loss of information.

Dimensionality reduction (DR) is an applicable way to reduce
the number of bands, and it aims to find a feature mapping from
the original feature space to a lower-dimensional embedding space
in which some desired information can be preserved as much as
possible. Some classic DR methods include principal component
analysis (PCA), linear discriminative analysis (LDA) and indepen-
dent component analysis (ICA). These methods are linear subspace

methods, which cannot reveal the intrinsic structure of data.
Recently, Bachmann and Ainsworth (2005) have discovered the
intrinsic manifold in HSI data, and manifold learning methods
can be used to analyze the data that lies on or near a
low-dimensional manifold, such as isometric mapping
(Tenenbaum et al., 2000), locally linear embedding (LLE) (Roweis
and Saul, 2000) and Laplacian eigenmaps (LE) (Belkin and Niyogi,
2003). However, these methods suffer from the out-of-sample
problem, which results in a difficult issue to map a new sample
to the embedding space. To overcome this drawback, the nonlinear
algorithms are approximately represented as the linear ones. For
instance, LE and LLE are approximately linearized into locality pre-
serving projections (LPP) (He and Niyogi, 2004) and neighborhood
preserving embedding (NPE) (He et al., 2005), respectively. These
methods are easy to operate for new samples, but they cannot pro-
mise good discriminating capability for their unsupervised nature.

In recent years, Yan et al. (2007) proposed a general graph
embedding (GE) framework for DR. Many traditional DR algo-
rithms (e.g. PCA, LDA, ISOMAP, LLE, LE, NPE and LPP) can be refor-
mulated within this framework. Based on this framework, some
linear discriminant methods are developed, such methods includ-
ing marginal Fisher analysis (MFA) (Yan et al., 2007) and local
Fisher discriminant analysis (LFDA) (Sugiyama, 2007). The
differences between different GE algorithms lie in the graph
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construction and the embedded type. Therefore, an essential issue
is how to compute a similarity matrix and select a constraint
matrix in the framework. A popular way to construct a graph is
k-nearest neighbors or �-radius ball, both of which connect graph
vertices with simple rules. However, it is unclear how to select
the neighborhood size and define the affinity weight matrix for
real-world applications.

Motivated by the recent development of sparse representation
(SR), some research works have applied SR to construct a sparse
similarity graph (Wright et al., 2009; Sun et al., 2013). Sparsity pre-
serving projections (SPP) (Qiao et al., 2010) is a classic algorithm to
construct a specific graph, called ‘1-graph, based on SR. It inherits
many merits of sparse reconstruction and constructs an adapting
graph for lack of model parameters, but this unsupervised nature
restricts its discriminating capability. To enhance the classification
performance of SPP, some supervised sparse methods are pro-
posed, such as discriminative learning by sparse representation
(DLSP) (Zang and Zhang, 2011) and sparse discriminant embedding
(SDE) (Huang, 2013). However, these methods are based on the
assumption that there is a single manifold in high-dimensional
data set. In real applications, data sets containing multi-manifold
structures are ubiquitous (Xiao et al., 2011). Elhamifar and Vidal
proposed a sparse representation method in affine subspace called
sparse manifold clustering and embedding (SMCE) (Elhamifar and
Vidal, 2011), which can adaptively select neighbor points that lie in
the same manifold and approximately span a low-dimensional
affine subspace. SMCE can be applied for clustering data, but it
does not directly give a projection matrix and encounters the
out-of-sample problem. Furthermore, it does not explore the prior
information of training samples.

In this paper, we propose a novel method termed sparse mani-
fold embedding (SME) based on GE and SR. It constructs an adapt-
ing graph containing the similarity of data points from the same
manifold, and it also overcomes the out-of-sample problem. To
improve the discriminant capability of SME, we present a super-
vised algorithm called sparse discriminant manifold embedding
(SDME), which applies the prior information to improve the sepa-
rability of data from different classes. Experimental results on
Indian Pines and PaviaU HSI data sets show that SME and SDME
are more suitable for DR of HSI than many traditional methods.

The remainder of the paper is organized as follows. In Section 2,
we review briefly GE, SR, and SMCE. SME and SDME are introduced
in Section 3. Section 4 presents the experimental results to demon-
strate the effectiveness of SME and SDME. Finally, we provide some
concluding remarks and suggestions for future work in Section 5.

2. Related works

For convenience, we first give some notations used in this arti-
cle. Let X ¼ fx1;x2; . . . ;xNg be a set of N points in a
high-dimensional space RD and ‘ðxiÞ 2 f1;2; . . . ; cg denotes the
class label of xi. The data points are assumed to lie on or near a
manifold of intrinsic dimensionality d (typically d � D). DR is to
find a low-dimensional embedding of X by mapping the
D-dimensional data into a low-dimensional embedding space Rd.
Let us denote the corresponding set of N points in the embedding
space Rd by Y ¼ fy1; y2; . . . ; yNg. For linear methods, the
low-dimensional embedding Y is replaced by a matrix form

Y ¼ VT X (where V 2 RD�d).

2.1. Graph embedding

The GE framework (Yan et al., 2007) provides a unified perspec-
tive to understand most DR algorithms. In GE, it needs to construct
an intrinsic graph that describes certain desired statistical or

geometrical properties of data, and a penalty graph characterizes
a statistical or geometric property which should be avoided. The

intrinsic graph G ¼ X;Wf g and the penalty graph GP ¼ X;WP
n o

are both undirected weighted graphs, where X is the vertex set,
W 2 RN�N and WP 2 RN�N are the weight matrices. The weight wij

is to measure the similarity of the edge joining vertices i and j,
and the weight wP

ij is to suppress the similarity characteristics
between the vertices i and j in the low-dimensional embedding.

The purpose of GE is to map each vertex of graph into a
low-dimensional space that preserves the similarity between the
vertex pairs. Then an optimal low-dimensional embedding is given
by the graph preserving criterion as

min
yT By¼c

1
2

X
i–j

yi � yj

�� ��2
wij ¼ min

YT BY¼c
YT LY ð1Þ

where c is a constant, B is the constraint matrix defined to avoid a
trivial solution of the objective function, and L is the Laplacian
matrix of graph G. B typically is a diagonal matrix for scale normal-
ization, and it may also be the Laplacian matrix of a penalty graph
GP , that is B ¼ LP . The Laplacian matrix L and LP are defined as

L ¼ D�W; Dii ¼
X
j–i

wij; 8i:

LP ¼ DP �WP ; DP
ii ¼

X
j–i

wP
ij; 8i:

ð2Þ

2.2. Sparse representation

In recent years, SR (Wei et al., 2013; Gui et al., 2012) gives rise
to the attention of many researchers, which was initially proposed
as an extension to traditional signal representations such as
Fourier and wavelet representations. It accounts for most or all
information of a signal with a linear combination of a small num-
ber of elementary signals in an over-complete dictionary. SR has
been successfully applied in signal processing, statistics and image
recognition, etc.

SR has compact mathematical expression. Given a signal
xi 2 RD and a matrix X ¼ ½x1;x2; . . . ;xN� 2 RD�N containing the ele-
ments of an over-complete dictionary in its columns. The purpose
of SR is to represent xi using as few entries of X as possible, and the
objective function can be expressed as

min
si

sik k0

s:t: xi � Xsik k < e
ð3Þ

where e can be seen as an error tolerance, si is the sparse coeffi-
cients of xi; sik k0 denotes the ‘0-norm of si which is equal to the
number of non-zero components in si.

However, it is a NP-hard problem to solve the Eq. (3).
Researchers have discovered that if the solutions are sparse
enough, and the solution of ‘0 minimization problem is equal to
solve the ‘1 minimization problem as

min
si

sik k1

s:t: xi � Xsik k < e
ð4Þ

where sik k1 is the ‘1-norm of si. The ‘1 minimization problem can be
solved by LASSO or LARS (Efron et al., 2004).

2.3. Sparse manifold clustering and embedding

In this section, we introduce the SMCE algorithm. It assumes
that for each data point there exists a small neighborhood in which
only the points coming from the same manifold lie approximately
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