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a b s t r a c t

Current methods for subgroup analyses of data collected from randomized clinical trials (RCTs) may lead
to false-positives from multiple testing, lack power to detect moderate but clinically meaningful dif-
ferences, or be too simplistic in characterizing patients who may benefit from treatment. Herein, we
present a general procedure based on a set of newly developed statistical methods for the identification
and evaluation of complex multivariate predictors of treatment effect. Furthermore, we implemented
this procedure to identify a subgroup of patients who may receive the largest benefit from bevacizumab
treatment using a panel of 10 biomarkers measured at baseline in patients enrolled on two RCTs
investigating bevacizumab in metastatic breast cancer. Data were collected from patients with human
epidermal growth factor receptor 2 (HER2)-negative (AVADO) and HER2-positive (AVEREL) metastatic
breast cancer. We first developed a classification rule based on an estimated individual scoring system,
using data from the AVADO study only. The classification rule takes into consideration a panel of bio-
markers, including vascular endothelial growth factor (VEGF)-A. We then classified the patients in the
independent AVEREL study into patient groups according to “promising” or “not-promising” treatment
benefit based on this rule and conducted a statistical analysis within these subgroups to compute point
estimates, confidence intervals, and p-values for treatment effect and its interaction. In the group with
promising treatment benefit in the AVEREL study, the estimated hazard ratio of bevacizumab versus
placebo for progression-free survival was 0.687 (95% confidence interval [CI]: 0.462e1.024, p ¼ 0.065),
while in the not-promising group the hazard ratio (HR) was 1.152 (95% CI: 0.526e2.524, p ¼ 0.723). Using
the median level of VEGF-A from the AVEREL study to divide the study population, then the HR becomes
0.711 (95% CI: 0.435e1.163, p ¼ 0.174) in the promising group and 0.828 (95% CI: 0.496e1.380, p ¼ 0.468)
in the not-promising group. Similar results were obtained with the median VEGF-A levels from the
AVADO study (“promising” group: HR ¼ 0.709, 95%CI: 0.444e1.133, p ¼ 0.151; “not-promising” group:
HR ¼ 0.851, 95% CI: 0.497e1.458, p ¼ 0.556). Our analysis shows it is feasible to employ statistical
methods for empirically constructing and validating a scoring system based on a panel of biomarkers.
This scoring system can be used to estimate the treatment effect for individual patients and identify a
subgroup of patients who may benefit from treatment. The proposed procedure can provide a general
framework to organize many statistical methods (existing or to be developed) into a coherent set of
analyses for the development of personalized medicines and has the potential of broad applications.
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Randomized clinical trials are designed to assess the efficacy of a
new treatment compared with placebo or standard of care.
Oftentimes, in addition to the main comparison of the overall
population enrolled in the study, subgroup analyses are performed
to examine whether the benefit of the new treatment is consistent
across patient populations [1]. Specifically, subgroup analyses aim

Abbreviations: FGF, fibroblast growth factor; FLT, fms-like tyrosine kinase; HER2,
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to estimate and test the treatment effect on pre-determined sub-
groups. The subgroups are usually characterized by simple crite-
rions measured at baseline, such as sex, race, comorbidities, and
pre-existing treatment status. The final results are often pre-
sented graphically in a forest plot (e.g., Fig. 1), where each tree
represents the point, as well as the interval estimates of the
treatment effect within a subgroup. If one or several trees stand(s)
out of the forest, this may indicate non-homogeneity of the treat-
ment effect.

This simplicity, however, may be misleading [2,3]. The first
difficulty associated with subgroup analyses is multiple testing [4].
If one tries to estimate the treatment effect in a sufficiently large
number of subgroups, there will always be significant findings. This
opens the door for subjective interpretation of the subgroups
identified based on the significance level or the point estimator
itself: it could be either a simple false-positive result due to mul-
tiple testing or a promising subgroup worthy of further investiga-
tion. Various statistical adjustments have been proposed but are
rarely used in practice for good reasons [5]. For example, the Bon-
ferroni correction is one of the most robust approaches to ensure
that the treatment effect in at least one of the identified subgroups
truly exists with the claimed significance level [6]. However, the
adjustment is highly conservative andmay fail to detect a moderate
subgroup-specific treatment effect. This raises the second difficulty
in subgroup analyses, i.e., lack of power to detect moderate yet
clinically meaningful treatment effects [3]. Finally, the definition of
the pre-defined subgroup may be too simplistic to characterize
patients who may (or may not) benefit from the treatment. If we
are willing to consider subgroups defined by a combination of
characteristics, the number of candidate subgroups increases very
rapidly, exacerbating the difficulties associated with multiple
testing and lack of statistical power. For example, 10 binary char-
acteristics can define up to 2048 different subgroups of patients.
Even after acknowledging that some subgroups may be too small to
be of interest, it is likely that we still need to deal with hundreds of
subgroups. When some of the characteristics are continuous, such
as systolic blood pressure or gene expression level, there are an
infinite number of subgroups and it becomes infeasible to conduct

subgroup analyses. More sophisticated methods that allow auto-
matic identification of the subgroups of interest are needed [7e9].

In light of these drawbacks of the simple subgroup analyses,
there are many recent developments in statistical methodology for
personalized medicine [7e19]. Among them, many adopt various
modern machine learning techniques to relax conventional statis-
tical model assumptions [11,14e19].

However, most of these recent developments are fragmentary
and there is no practical guideline for conducting the complete
statistical analysis for personalized medicine. For example, in the
presence of multiple approaches for estimating personalized
treatment effect and even different metrics for quantifying the
personalized treatment effect, there is a lack of methods for
selecting the optimal approach.

We have identified three goals for statistical methods in
personalized medicine: (1) estimating the treatment effect for the
individual patient, i.e., the individualized treatment effect
[9,10,14e19], (2) building a classification rule for identifying pa-
tients who may (or may not) benefit from the treatment, or (3)
making valid statistical inferences about treatment effect in the
identified subgroup.

In this paper, we propose a coherent stage-wise procedure for
addressing all three objectives. It has a clearly defined target at each
step. The procedure is also flexible and can easily be extended to
leverage new or future developments in the field. This procedure
will be illustrated by analyzing the data from two randomized
clinical oncology trials conducted by Hoffmann-La Roche Inc. In
both trials, the overall comparisons showed moderate treatment
effect in the entire study population and it is desirable to identify a
subgroup of patients having more substantial treatment benefit
[26,27]. However, the simple subgroup analysis failed to detect and
confirm the existence of the heterogeneous treatment effect [28].

2. Methods

2.1. Procedure for subgroup selection

The procedure consists of two major steps: training and testing.
The outcome of the training step is a classification rule for selecting
a subgroup of patients based on baseline features including
biomarker levels, demographic information, comorbidities, etc. The
classification rule can be complex and depends on multiple fea-
tures. The outcome of the testing step is the verification and eval-
uation of the treatment effect in the subgroup identified by the
classification rule, as well as in the complementary subgroup. In the
ideal case, there are data from two randomized clinical trials and
we use the first for training (Part I) and the second for testing (Part
II). If all the data are from a single trial, we need to split the data into
two non-overlapping parts (Parts I and II).

2.2. Training step

In this stage, we estimate the treatment effect for individual
patients and construct a classification rule for selecting patients
with promising treatment effect. However, several estimation
methods can be used and we need to select the optimal one based
on the data. To this end, the estimation and validation steps need to
be built within the training step. Specifically, the training data will
be randomly split into two parts: the first part (Part I-E) will be used
to estimate the treatment effect for individual patients with
different methods; the second part (Part I-V) will be used to eval-
uate the performance of each of the estimated treatment effects in
stratifying patient population into strata of different treatment
effects.

Fig. 1. Forest plot for subgroup analysis in AVADO study. The high and low groups are
defined using the median of the corresponding biomarkers.
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