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Automated and efficient algorithms to perform segmentation of terrestrial LiDAR data is critical for
exploitation of 3D point clouds, where the ultimate goal is CAD modeling of the segmented data. In this
work, a novel segmentation technique is proposed, starting with octree decomposition to recursively
divide the scene into octants or voxels, followed by a novel split and merge framework that uses graph
theory and a series of connectivity analyses to intelligently merge components into larger connected
components. The connectivity analysis, based on a combination of proximity, orientation, and curvature
connectivity criteria, is designed for the segmentation of pipes, vessels, and walls from terrestrial LiDAR
data of piping systems at industrial sites, such as oil refineries, chemical plants, and steel mills. The
proposed segmentation method is exercised on two terrestrial LiDAR datasets of a steel mill and a
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chemical plant, demonstrating its ability to correctly reassemble and segregate features of interest.
© 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

Light detection and ranging (LiDAR) originated in the early
1960s, with its first applications in meteorology. As LiDAR technol-
ogy matured, improving in accuracy, speed, and spatial resolution,
it has been adopted for use in numerous applications, extending
from topographic mapping with airborne LiDAR platforms to sur-
veying of urban sites with terrestrial LiDAR systems, and more
recently, to corridor mapping with mobile LiDAR systems/devices
mounted on land vehicles. Static terrestrial LiDAR has become an
especially effective tool for surveying, in some cases replacing tra-
ditional techniques such as electronic total stations and GPS meth-
ods. With terrestrial LiDAR, surveyors can scan an entire site at a
standoff distance without requiring an individual to occupy the
site (Lee, 2011). Current generation LiDAR scanners also have very
fine spatial resolution, providing precise 3D point cloud data with
millimeter accuracy (Soulard and Bogle, 2011). Typically, a site is
surveyed from multiple locations to obtain more complete cover-
age, with the resulting scans aligned and combined to form a single
high density point cloud dataset. Consequently, LiDAR point clouds
usually contain hundreds of thousands to tens of millions of indi-
vidual points, depending on the size of the site being surveyed.
Furthermore, LiDAR data is nonuniformly sampled, as scanned
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points do not lie on a uniform spatial grid. The ultimate goal in
most applications involving LiDAR is to process this high density
point cloud data and reconstruct a 3D computer-aided design
(CAD) model of the scene, first by segmenting the point cloud data
into appropriate segments and then recognizing primitives from
the segments to generate 3D models.

This work focuses on efficient segmentation of terrestrial LIDAR
data of piping systems in industrial sites (e.g. chemical plants, oil
refineries, and steel mills). Given an entire nonuniformly sampled
point cloud of a scene, the objective is to perform segmentation
and extract individual segments, determining which segments are
likely to be pipes, vessels, or walls. We propose a robust octree-
based split and merge segmentation algorithm that can efficiently
process large LiDAR data. After initially splitting the dataset into
octants (referred to as voxels in this work) based on point density
using octree decomposition, the points within each voxel are further
split into spatially unconnected components using graph theory
based analysis. Following splitting, the merging process uses a ser-
ies of connectivity criteria (proximity, orientation, and curvature) to
intelligent merge components together. The novel split and merge
procedures are the key contributions of this work. This proposed
segmentation algorithm is a bottom-up approach that is scalable
and parallelizable.

The organization of the manuscript is as follows. Section 2
describes prior, related work on the segmentation of terrestrial
LiDAR data. Section 3 provides a detailed description of the
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proposed octree-based split and merge segmentation algorithm.
Section 4 shows the results of the proposed algorithm on several
LiDAR datasets, comparing with two other published techniques.
Section 5 presents the conclusions of this work.

2. Background

The earliest studies on the segmentation of range data used sen-
sors that acquired 2.5D range images, also referred to as depth
maps, that lie on a uniform spatial grid - each regularly spaced
point (x,y) on a rectangular grid has a range measurement.
Henderson and Bhanu (1982) developed a planar region growing
algorithm for range images using a spatial proximity graph.
Hebert and Ponce (1982) proposed a method to segment depth
maps into primitives such as planes and cylinders by mapping
point surface normals to the Gaussian sphere. An edge-region seg-
mentation ring operator was developed by Inokuchi et al. (1982).
Besl and Jain (1985) provided an excellent literature review on
the studies involving range image analysis. Unlike range images,
point clouds from LiDAR sensors are 3D data that do not lie on a
uniform spatial grid. While many concepts can be adopted from
the earlier work with range images, there has been substantial pro-
gress recently in the segmentation of LiDAR point cloud data.

As mentioned in Section 1, LiDAR sensors are categorized as
either airborne or terrestrial. Many techniques have been devel-
oped for segmentation of airborne LiDAR data. Arefi and Hahn
(2005), Zhao et al. (2011), Li et al. (2013), Yan et al. (2015),
Poullis and You (2009), and McLaughlin (2006) are a few represen-
tative techniques. Due to the top-down perspective of airborne
LiDAR platforms, airborne LiDAR point clouds predominantly con-
tain planar surfaces, especially for urban scenes. Therefore, air-
borne LiDAR data are often considered to be 2.5D data - for
example, a substantial fraction of the points in an airborne LiDAR
point cloud of an urban scene would lie on roof surfaces, but few
points would be acquired of building walls (Zhou and Neumann,
2010). Terrestrial LiDAR can be subdivided into mobile platforms
or static systems, which is the focus of this work. However, seg-
mentation of terrestrial LiDAR data, especially scenes of piping sys-
tems, has received relatively less attention. The remainder of this
section is devoted to discussing the relevant works in this area.

Rabbani (2006) introduced a smoothness constraint based seg-
mentation technique that is one of the most widely cited works on
segmentation of terrestrial LiDAR data. Rabbani’s technique is a
bottom-up approach with two main steps: normal vector estima-
tion and region growing. In the first step, the surface normal for
each point is estimated by fitting a plane to its neighbors, found
through the k-nearest neighbors method. The residual of the plane
fitting to the neighbors of a point is used by Rabbani (2006) to
approximate the local surface curvature. A small residual indicates
that the neighbors lie on a planar surface, while a large residual
indicates a more curved surface. However, a large residual may
also be due to noise. Following computation of the surface normal
of every point, the second step of region growing is initiated with a
seed point that has the smallest residual from the first step. The
neighboring points of this seed point with residual below a set
threshold are added to the list of available points for consideration,
and a surface smoothness constraint determines whether these
available points are added to the current region. The surface
smoothness constraint is implemented by considering the angle
between the surface normal of a seed point and the surface nor-
mals of its neighbors. If this angle is below a certain threshold, typ-
ically set at 15° (Rabbani, 2006), this point is added to the region
and updated to be the current seed point. The process continues
iteratively until the list of available points is exhausted, and then
a new region is initiated using the point with the smallest residual
from the remaining points.

Rabbani’s segmentation technique has two limitations, as we
observed through experimentation using our Matlab implementa-
tion of Rabbani’s algorithm. First, regions linked together by a
smooth connector are segmented as a single region. For example,
a vertical pipe connected to a horizontal pipe via a long radius
elbow joint would exhibit smoothly varying surface normals from
one end to the other, and would be segmented as a single region
instead of three separate regions, as typically would be desired.
Rabbani (2006) also recognized this concern, but reasoned that this
under-segmentation is more preferable to over-segmentation. The
second limitation is the computational complexity of the algo-
rithm, which requires the k-nearest neighbors (KNN) for every
point in the dataset to be computed. The linear search solution
for KNN has a running time of O(Nd), where N is the number of
points and d is the dimensionality of the data. Elseberg et al.
(2012) provide an excellent comparison of different nearest-
neighbor search strategies. For typical LIDAR point clouds that con-
tain hundreds of thousands to tens of millions of points, computing
the KNN of every point is computationally prohibitive. Space parti-
tioning methods such as k-d trees have been applied to KNN
search (Friedman et al., 1977), reducing the search complexity to
O(logN), but involve an offline phase to construct the k-d tree.

Schnabel et al. (2007) proposed an efficient random sample
consensus (RANSAC) algorithm for large scale point cloud shape
detection, using a hierarchically structured sampling strategy for
generating different types of primitive shapes which can signifi-
cantly reduce computational runtime. The major deficiency of
RANSAC is its computational demand (Schnabel et al., 2007), and
it must be heavily optimized for practical processing.

Wang and Tseng (2010) introduced an incremental segmenta-
tion technique using an octree-structured voxel space. Their octree
based split and merge segmentation algorithm first divides the
input point cloud into octree subspaces (i.e. voxels) until each
voxel only contains coplanar points during the splitting process.
Coplanarity is measured by computing the residuals of plane fitting
in a voxel, similar to the plane fitting procedure of Rabbani (2006).
If the variance of the residuals exceeds a user defined threshold,
indicating that the points do not form a coplanar surface, the node
is further subdivided into eight child voxels. Following the splitting
procedure, Wang and Tseng (2010) perform a merging procedure,
checking whether adjacent planes have similar surface normal ori-
entations and are sufficiently proximate to be merged into a single
plane. Since this technique only focuses on coplanarity during the
split and merge steps, it is more suited for segmentation of air-
borne LiDAR data than for industrial scenes. Wang and Tseng
(2011) extended their 2010 technique, proposing a four step proce-
dure. First, Wang and Tseng (2011) use an octree decomposition to
divide the point cloud into voxels with dimensions similar to the
LiDAR point spacing, resulting in relativity small voxels. Then, vox-
els are connected together based on spatial proximity into groups
of points via connected component labeling (CCL). The third step is
split and merge, based on their 2010 work on airborne LiDAR
(Wang and Tseng, 2010) which introduces the co-planarity crite-
rion. Their co-planarity criterion is used to segments groups of
points which lie on the same plane. The fourth step of Wang and
Tseng (2011) then combines planes with similar orientations
together using an angular threshold, enabling this 4-step proce-
dure to be applied to terrestrial LiDAR point clouds. One major dif-
ference between the proposed approach and Wang and Tseng
(2011) is the criterion for the merge procedure. While Wang and
Tseng (2011) use the coplanar criterion, we base our approach on
the orientation criterion. Though cylinders can be represented as
being composed of a ring of planar strips which are then merged
together into a cylinder in the fourth step (Wang and Tseng,
2011), we do not believe this is an ideal representation. Piping sys-
tems typically consist of pipes of varying sizes, so a single angular
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