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a b s t r a c t

The potential and limitations of the hyperspectral remote sensing MIVIS sensor (Multispectral Infrared
Visible Imaging Spectrometer) in classifying heterogeneous landscapes are explored in this study. In
order to quantify the discriminant information derived from selected MIVIS subsets we classified a mon-
itored scenario by progressively increasing the feature space dimensionality. The hyperspectral subsets
are defined through the Sequential Forward Selection algorithm, while mapping processes have been per-
formed through the Maximum Likelihood, Spectral Angle Mapper and Spectral Information Divergence
classifiers. Impacts of spectral bands on the overall classification accuracies and single land cover-scale
reliability, as well as possible dimensionality effects (Hughes phenomenon) are investigated. The analysis
is tested on a 20-km stretch of the Marecchia River (Emilia Romagna, Italy) by using MIVIS data acquired
in autumn 2009 and 2010 for a 17-class mapping including complex urban/rural areas. For the considered
dataset, the MIVIS sensor showed an equipment failure: of the nominal 102-band MIVIS dataset, only the
first 24 bands, spanning within the 0.441–1.319 lm spectral range, were exploitable. Nevertheless, the
available information provided valuable discriminant contributions in land cover mapping (Maximum
Likelihood Overall Accuracy �85%) with encouraging reliability on mixed forests, croplands, and no-veg-
etated floodplain patterns, whereas riparian vegetation and urban zones exhibited low classification
accuracies. The relationship between the spectral space dimensionality and the minimum training-set
size that is necessary to achieve a given inter-class separability has also been experimentally investigated
by progressively under-sampling the original training set. The maximum under-sampling factor that
avoided a decrease in the overall accuracy turned out to be, at maximum, 15 for the considered data set.
� 2012 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier

B.V. All rights reserved.

1. Introduction

Remote sensing hyperspectral sensors provide very high spec-
tral resolution data allowing for a better discrimination among
similar ground cover classes than traditional multispectral sensors
(e.g., Xie et al., 2008; Xu and Gong, 2007). The hyperspectral-de-
rived improvements are particularly important in the classification
of land covers with similar spectral signatures, such as complex ur-
ban/rural landscapes (Borengasser et al., 2008). These heteroge-
neous patterns, including mixed environments, such as
floodplain, broad-leaved and conifer forests, urban and agricultural
zones, are characterized by a significant spatiotemporal variability
resulting from many interconnected natural- and human- induced

processes interacting in the biosphere (Forzieri and Catani, 2011).
Given the large number of diverse land covers and their expected
interclass spectral overlapping, hyperspectral sensors represent
valuable tools for automatic detection.

Apart from the variable performances depending on the specific
employed classifier (e.g., Belluco et al., 2006; Melgani and Bruzz-
one, 2004; Zhang et al., 2011), the main problematic issue of the
analysis of hyperspectral data is related to the high dimensionality
of the spectral space. First, the large number of spectral features
used for classification purposes impacts on the complexity of a
classifier, in terms of both computational burden and memory
occupation. Furthermore, when increasing the number of features,
the Hughes’ phenomenon (Hughes, 1968) may occur, that consists
in a loss of classification accuracy caused by the mismatch between
the number of available training samples and the number of sam-
ples that should be needed to reliably estimate the classifier
parameters (Landgrebe, 2003). More precisely, given a finite collec-
tion of training samples, as the number of features used for

0924-2716/$ - see front matter � 2012 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.isprsjprs.2012.09.011

⇑ Corresponding author at: Climate Risk Management Unit, Institute for Envi-
ronment and Sustainability, Joint Research Centre, European Commission, Ispra,
Italy. Tel.: +39 0332785528; fax: +39 0332786653.

E-mail address: giovanni.forzieri@jrc.ec.europa.eu (G. Forzieri).

ISPRS Journal of Photogrammetry and Remote Sensing 74 (2012) 175–184

Contents lists available at SciVerse ScienceDirect

ISPRS Journal of Photogrammetry and Remote Sensing

journal homepage: www.elsevier .com/ locate/ isprs jprs

http://dx.doi.org/10.1016/j.isprsjprs.2012.09.011
mailto:giovanni.forzieri@jrc.ec.europa.eu
http://dx.doi.org/10.1016/j.isprsjprs.2012.09.011
http://www.sciencedirect.com/science/journal/09242716
http://www.elsevier.com/locate/isprsjprs


classification grows, the classification accuracy typically increases
up to a maximum and then decreases when the number of features
is further enlarged. This decaying behavior, known as the Hughes’
phenomenon, occurs when the number of classifier parameters
(which generally increases, often super-linearly, with the number
of features) becomes so large that the fixed training set is insuffi-
cient to accurately estimate all parameters (Landgrebe, 2003). To
cope with this problem, feature reduction techniques have been
widely adopted and can be achieved by two main approaches,
respectively based on the selection of the most informative feature
subset from the original feature space (feature selection) (e.g., Car-
iou et al., 2011; Serpico et al., 2002), or the extraction – after a fea-
ture space transformation – of a limited number of features
(feature extraction) (e.g., Benediktsson et al., 2005; Serpico and
Moser, 2007). In the former case, most approaches are based on
the key idea of maximizing a functional representing an inter-class
distance or a separability measure. Popular choices for such a func-
tional are the Bhattacharyya and Jeffries–Matusita distances,
which are related to the error probability of a Bayesian classifier,
or the divergence and normalized divergence, which rely on an
information-theoretic formulation (Landgrebe, 2003; Richards
and Jia, 2006). Maximizing these functionals through an exhaustive
search is often computationally unfeasible for moderate to large
numbers of input features (Landgrebe, 2003). Therefore, subopti-
mal strategies, based for instance on sequential deterministic or
stochastic procedures or steepest ascent strategies, are generally
used instead (Serpico et al., 2002). Concerning feature extraction
through data transformation, several approaches have been pro-
posed based on class-separability functionals, decision boundaries,
nonparametric formulations, or kernel-based extensions (Landgr-
ebe, 2003; Richards and Jia, 2006). Compared to feature-selection
methods, these approaches represent more general transforma-
tions and, therefore, they can be more powerful feature reduction
techniques. However, they extract a collection of transformed fea-
tures that have well defined mathematical but not physical mean-
ings. On the contrary, the output features provided by a feature
selection method are a subset of the original spectral channels
and consequently retain their physical meanings. A review of the
feature reduction approaches for hyperspectral image classifica-
tion can be found in (Serpico and Moser, 2007).

It is a shared opinion that high spatial and spectral resolution
data are essential attributes to provide accurate landscape-scale
mapping and/or detection results (Chanussot et al., 2006; Dell’Ac-
qua et al., 2004). Modern space-borne hyperspectral sensors (e.g.,
HYPERION, CHRIS) showed increasing capabilities in land cover
classification (e.g., Duca and Del Frate, 2008; Goodenough et al.,
2003), but still present some inaccuracies in monitoring environ-
ments that are highly variable in space (Cavalli et al., 2008; Pignatti
et al., 2009). In this context, high-resolution airborne hyperspectral
sensors (e.g., AISA, MIVIS, AVIRIS, CASI, HYMAP) represent en-
hanced mapping tools (e.g., Gianinetto and Lechi, 2004; Lu et al.,
2007; Melgani and Bruzzone, 2004) and also preliminary tests to
drive planned satellite-based systems (e.g., PRISMA, EnMAP,
HyspIRI). In particular, the airborne hyperspectral MIVIS sensor
(Multispectral Infrared Visible Imaging Spectrometer) has been
demonstrated to be a powerful instrument in land cover classifica-
tions. This sensor was developed by the Aerial Laboratory for Envi-
ronmental Researches of the Italian National Research Council
(LARA-CNR); it operates with high geometric and spectral resolu-
tion (depending on the flight height). MIVIS data have been used
for classification purposes in many different natural contexts, such
as wetland/submerged ecosystems (e.g., Belluco et al., 2006; Cira-
olo et al., 2006) and mixed forests (e.g., Boschetti et al., 2007; Pig-
natti et al., 2009). Results showed the great potential of the MIVIS
sensor in identifying terrestrial vegetation species, such as pine,
oak, willow, poplar and alder (Boschetti et al., 2007). MIVIS data

have been also successfully exploited for retrieving the complex
urban tissue (Cavalli et al., 2008) by distinguishing the main
anthropogenic surfaces (e.g. roofing and paving materials). In light
of these encouraging performances, additional experiments on het-
erogeneous urban/rural landscapes could provide a better under-
standing of the MIVIS strengths and limitations on classification
tasks.

In order to explore the potential of MIVIS for land-cover dis-
crimination, in this paper we tested its discriminant contribution
to classify complex environments including diverse forest species,
riparian vegetation, cropfield, and urban infrastructures (17-class
set). For this purpose we used different supervised classifiers
and hyperspectral subsets identified through a feature selection
approach. Land cover-based performances and possible hyperspec-
tral-derived dimensionality effects are analyzed. The main novel
contribution of this paper is the experimental investigation of
the MIVIS sensor capability for classification purposes of land-
scapes with heterogeneous land covers.

2. Methods

2.1. Study area

The study was conducted on a 20-km stretch of the Marecchia
river (�40 km2), that sources in Eastern Tuscany and runs at the
border of the regions of Emilia-Romagna and Marche, in North-
Eastern Italy (43�N, 12�E), (Fig. 1). Such study area has been chosen
for its complexity in land cover spatial variability, prevalently con-
trolled by climatic and lithologic factors (Mannori and Sani, 1987;
PAI-Hydrological planning, 2004), and represents an excellent test
to quantify the hyperspectral remote sensing capability in classifi-
cation problems of heterogeneous landscapes. The hill slopes are
characterized by a significant biodiversity of arboreal species,
which include conifer and broad-leaved types, such as oak, pine,
cypressus and spruce (Fig. 1A, mixed forest). Riparian ecosystems
show complex patterns with flexible and stiff vegetation in differ-
ent evolutionary stages, such as willow, arundo donax, heatland
and poplar (Fig. 1B, floodplain). The valley floor is prevalently
made up of fabrics alternated with industrial units and connected
through dense asphalt road network and gardens (Fig. 1C, urban
zone), agricultural fields, such as croplands and olive groves, and
semi-natural vegetation, such as meadows (Fig. 1D, agricultural
area).

We defined 17 main target land cover classes to discriminate in
the classification process: water river (WR), water lagoon (WL),
bare soil (BS), asphalt (AS), plowed field (PF), urban fabric (UF),
industrial unit (IU), herbaceous (HE), heatland (HL), arundo donax
(AD), poplar (PL), oak (OK), pine (PN), cypressus (CY), spruce (SP),
willow (WI), and olive (OV). The afore-mentioned land cover clas-
ses have been selected to assess the MIVIS potential for classifica-
tion tasks in diverse application fields such as urban planning, river
restoration, agricultural and forestry resource management.

2.2. Remote sensing and field data

Hyperspectral data were collected in two different acquisition
times in December 6, 2009 and October 23, 2010 within a time-
frame spanning from 10.00 to 14.00 UTC, through the MIVIS sen-
sor, which is a whiskbroom sensor with high spatial (3 � 3 m pixel
size), spectral (0.02 lm and 0.05 lm for the first and second spec-
trometer, respectively) and radiometric (12 bit) resolution. Each
MIVIS image set covers the whole study area and counts 102 bands
distributed within the visible and infrared regions of the spectrum
between 0.43 and 12.7 lm. Color-infrared ADS40 images (0.2-m
spatial resolution) and Light Detection and Ranging (LiDAR) data
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