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a b s t r a c t

Awide range of methods for analysis of airborne- and satellite-derived imagery continues to be proposed
and assessed. In this paper, we review remote sensing implementations of support vector machines
(SVMs), a promising machine learning methodology. This review is timely due to the exponentially
increasing number of works published in recent years. SVMs are particularly appealing in the remote
sensing field due to their ability to generalize well even with limited training samples, a common
limitation for remote sensing applications. However, they also suffer from parameter assignment issues
that can significantly affect obtained results. A summary of empirical results is provided for various
applications of over one hundred published works (as of April, 2010). It is our hope that this survey will
provide guidelines for future applications of SVMs and possible areas of algorithm enhancement.

© 2010 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by
Elsevier B.V. All rights reserved.

1. Introduction

Remotely-sensed data are used in numerous applications. Typ-
ically, an image classification process is initiated to convert data
into meaningful information. Unfortunately, image classification
is not a trivial task. As noted by Chi et al. (2008), classification of
remote sensing data is particularly daunting because most of the
supervised learning schemes require sufficiently large amount of
training samples, yet definition and acquisition of reference data
is often a critical problem. Various classification techniques, both
parametric and non-parametric, have been developed and used in
different contexts — remote sensing inclusive.

Previous reviews, such as that by Plaza et al. (2009), focused
on recent developments in methodologies for processing a
specific type of imagery, for example hyperspectral images. The
review provided in this paper follows the algorithmic perspective
rather than image characteristics. More specifically, we focus on
applications of support vectormachines (SVMs) in remote sensing.
The motivation to carry out this study comes from different
sources. First, SVMs are not as well-known as other classifiers
(e.g., decision trees, variants of neural networks) in the general
remote sensing community, yet they can match if not exceed the
performance of established methods. Second, their performance
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gains seem well-suited for remote sensing applications, where a
limited amount of reference data is often provided. Third, even
though the method is not widely popular, in recent years there
has been a significant increase in SVM works on remote sensing
problems suggesting this review is current and appropriate.

This review focuses on recent research papers (available by
April, 2010) published in eight major journals of remote sens-
ing, namely, ISPRS Journal of Photogrammetry and Remote Sens-
ing, Remote Sensing of Environment, Photogrammetric Engineer-
ing & Remote Sensing, IEEE Transactions on Geoscience and Re-
mote Sensing, IEEE Geoscience and Remote Sensing Letters, Inter-
national Journal of Remote Sensing, Canadian Journal of Remote
Sensing and GIScience and Remote Sensing. A limited number of
research papers relevant to the thematic point and thus included
in this review came from additional sources. The selected papers
represent a wide range of: (i) applications from coal reserve detec-
tion to urban growth monitoring, (ii) resolutions from sub-meter
to several kilometers pixel size, (iii) spectral resolution from single
to hundreds of bands, and (iv) comparative methods from max-
imum likelihood classifiers to neural networks. For completeness,
we first recap on the basics of SVMmethodology before diving into
specific works. Relevant papers are then summarized, while juxta-
position of general patterns enables us to derive conclusions and
recommendations for further investigations.

2. Overview of support vector machines

Support vectormachines (SVMs) is a supervisednon-parametric
statistical learning technique, therefore there is no assumption
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Fig. 1. Linear support vector machine example.
Source: adapted from Burges (1998).

made on the underlying data distribution. In its original formula-
tion (Vapnik, 1979) the method is presented with a set of labeled
data instances and the SVMtraining algorithmaims to find ahyper-
plane that separates the dataset into a discrete predefined number
of classes in a fashion consistent with the training examples. The
term optimal separation hyperplane is used to refer to the deci-
sion boundary that minimizes misclassifications, obtained in the
training step. Learning refers to the iterative process of finding a
classifier with optimal decision boundary to separate the training
patterns (in potentially high-dimensional space) and then to sep-
arate simulation data under the same configurations (dimensions)
(Zhu and Blumberg, 2002).

In its simplest form, SVMs are linear binary classifiers that
assign a given test sample a class from one of the two possible la-
bels. An instance of a data sample to be labeled in the case of re-
mote sensing classification is normally the individual pixel derived
from themulti-spectral or hyperspectral image. Such a pixel is rep-
resented as a pattern vector, and for each image band, it consists
of a set of numerical measurements. Elements of the feature vec-
tor may also include other discriminative variable measurements
based onpixel spatial relationships such as texture. Fig. 1 illustrates
a simple scenario of a two-class separable classification problem
in a two-dimensional input space. An important generalization
aspect of SVMs is that frequently not all the available training ex-
amples are used in the description and specification of the separat-
ing hyperplane. The subset of points that lie on the margin (called
support vectors) are the only ones that define the hyperplane of
maximummargin.

The implementation of a linear SVM assumes that the multi-
spectral feature data are linearly separable in the input space.
In practice, data points of different class memberships (clusters)
overlap one another. This makes linear separability difficult as the
basic linear decision boundaries are often not sufficient to classify
patterns with high accuracy. Techniques and workarounds such as
the soft margin method (Cortes and Vapnik, 1995) and the kernel
trick are used to solve the inseparability problem by introducing
additional variables (called slack variables) in SVM optimization
and mapping (using a suitable mathematical function) the non-
linear correlations into a higher (Euclidean or the Hilbert) space,
respectively. A kernel function typically needs to fulfill Mercer’s
Theorem in order to be a valid kernel in SVMs (Scholkopf and
Smola, 2001). The choice of a kernel function often has a bearing
on the results of analysis. Furthermore, typical remote sensing

problems usually involve identification of multiple classes (more
than two). Adjustments are made to the simple SVM binary
classifier to operate as a multi-class classifier using methods such
as one-against-all, one-against-others, and directed acyclic graph
(Knerr et al., 1990).

SVMs are particularly appealing in the remote sensing field due
to their ability to successfully handle small training data sets, often
producing higher classification accuracy than the traditionalmeth-
ods (Mantero et al., 2005). The underlying principle that benefits
SVMs is the learning process that follows what is known as struc-
tural risk minimization. Under this scheme, SVMsminimize classi-
fication error on unseen data without prior assumptions made on
the probability distribution of the data. Statistical techniques such
as maximum likelihood estimation usually assume that data dis-
tribution is known a priori. Burges (1998) in a well-organized SVM
tutorial described a simple experiment to illustrate an advantage
of SVMs in an image recognition problem. In that demonstration,
the performance of a basic multi-way SVM-based recognizer was
assessed on image classification in the presence of prior knowl-
edge. The accuracy turned out to be approximately the same if the
pixels were first shuffled, with each image instance suffering the
same random permutation. Yet, when the act of ‘vandalism’ (or re-
moval of prior knowledge) took place, SVM still outperformed even
the best neural networks. This discovery is particularly appealing
in remote sensing applications since data acquired from remotely
sensed imagery usually have unknown distributions, and meth-
ods such as Maximum Likelihood Estimation (MLE) that assume
a multivariate normal data model do not necessarily match that
assumption. Even if the data, whose dimensionality is assumed to
match the number of spectral bands, were normally distributed,
the assumption that the distribution can be described using a bell-
shaped (Gaussian) function ceases to be sound, since the concen-
tration of data in higher dimensional space tends to be in the tails
(Fauvel et al., 2009). This phenomenonwill continue to be encoun-
tered in remote sensing as new sensors increase spectral resolution
and therefore data dimensionality.

There is also another interesting concept that serves as a
key attraction to SVMs. Commonly described by many authors
under the notion of overfitting (Montgomery and Peck, 1992), yet
variously referred to by others as bias-variance tradeoff (Geman
et al., 1992) or capacity control (Guyon et al., 1992), SVM-based
classification has been known to strike the right balance between
accuracy attained on a given finite amount of training patterns and
the ability to generalize to unseen data.

Alongside the benefits derived from the SVM formulation there
are also several challenges. The major setback concerning the ap-
plicability of SVMs is the choice of kernels. Althoughmany options
are available, some of the kernel functions may not provide opti-
mal SVM configuration for remote sensing applications. Empirical
evidence indicates that kernels such as radial basis function and
polynomial kernels applied on SVM-based classification of satellite
image data produce different results (Zhu and Blumberg, 2002). A
good explanation on SVM kernels and their functionality is pre-
sented in numerous papers (e.g., Kavzoglu and Colkesen, 2009).
From the non-expert user point of view, SVM theory is a bit in-
timidating, particularly due to the fact that the more efficient SVM
variants often incorporate some difficult to understand concepts.
This limits effective cross-disciplinary applications of SVMs.

Numerous SVM tutorials are available (such as Cortes and
Vapnik (1995) and Burges (1998)), but none of these contains an
exhaustive discussion on the increasing number of newly proposed
variants of SVMs. In the remote sensing field a good starting point
would be a textbook by Tso and Mather (2009) that provides a
review of the entire field of classification methods for remotely
sensed data, including SVMs. For those interested in rule extraction
from SVMs a recent computer science review is available (Barakat
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