Contents lists available at ScienceDirect #### **Fitoterapia** journal homepage: www.elsevier.com/locate/fitote ## Novel hybrids of natural β -elemene bearing isopropanolamine moieties: Synthesis, enhanced anticancer profile, and improved aqueous solubility Jichao Chen^a, Tianyu Wang^a, Shengtao Xu^a, Aijun Lin^a, Hequan Yao^a, Weijia Xie^a, Zheving Zhu^b, Jinyi Xu^a, - a State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China - b Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK #### ARTICLE INFO # Keywords: β -Elemene Isopropanolamine Dimer Antitumor activity Aqueous solubility #### ABSTRACT A series of novel β -elemene isopropanolamine derivatives were synthesized and evaluated for their antitumor activity. The results indicated that all of the compounds showed stronger antiproliferative activities than β -elemene as well as improved aqueous solubility. In particular dimer $\mathbf{6q}$ showed the strongest cytotoxicity against four tumor cell lines (SGC-7901, HeLa, U87 and A549) with IC $_{50}$ values ranging from 4.37 to 10.20 μ M. Moreover, combination of $\mathbf{6q}$ with cisplatin exhibited a synergistic effect on these cell lines with IC $_{50}$ values ranging from 1.21 to 2.94 μ M, and reversed the resistance of A549/DPP cells with an IC $_{50}$ value of 2.52 μ M. The mechanism study revealed that $\mathbf{6q}$ caused cell cycle arrest at the G2 phase and induced apoptosis of SGC-7901 cells through a mitochondrial-dependent apoptotic pathway. Further *in vivo* study in H22 liver cancer xenograft mouse model validated the antitumor activity of $\mathbf{6q}$ with a tumor inhibitory ratio (TIR) of 60.3%, which was higher than that of β -elemene (TIR, 49.1%) at a dose of 60 mg/kg. Altogether, the potent antitumor activity of $\mathbf{6q}$ *in vitro* and *in vivo* warranted further preclinical investigation for potential anticancer chemotherapy. #### 1. Introduction Over the past decade, there is a markedly increasing trend in the incidence and mortality of malignant tumors around the world [1] and cancer has become the first leading cause of death in China, beyond cerebrovascular and heart diseases [2]. The extensive prescription of synthetic antitumor drugs is being ruled out owing to their toxicity, resistance and unwanted side effects [3,4]. This led to the search for new antineoplastic agents, particularly those obtained from natural sources such as animals, plants, microbes and marine organisms [5,6]. In recent years, a large number of natural products, especially terpenes, have been discovered with marked anticancer activity *in vitro* and *in vivo*, some of which have been successfully developed for clinical use to treat human neoplastic diseases [7–9]. Curcuma wenyujin is a popular group of traditional Chinese medicine plants whose essential oils are widely used in cancer treatment in China [10]. β -Elemene (1, Scheme 1), a sesquiterpene compound extracted from the essential oils of Curcuma wenyujin, accounts for 60–72% of elemene including α , β , γ and δ forms [10]. As the major active antitumor component in the elemene mixture, β -elemene has been isolated and approved by the Chinese Food and Drug Administration for the treatment of human cancers [11]. The major advantages of β -elemene as an anticancer drug are [12–14]: i) broad-spectrum antitumor effects in various types of cancers, including drug-resistant tumors; ii) not inducing any multidrug resistance and reversing the resistance of other antitumor drugs in tumor cells; and iii) low toxicity without bone marrow suppression. Despite these striking antitumor properties, the poor water solubility and moderate activity of β -elemene hampers its wide applications in clinic. Structural modifications are an effective approach to improve the druggability of natural compounds [15]. And it has been reported that introduction of oxygen or nitrogen-containing polar group into the skeleton of β -elemene could favorably impact its water solubility and antitumor activity [16,17]. Enlightened by these findings, we designed a series of novel β -elemene isopropanolamine derivatives by introducing both amine and hydroxyl groups to increase the water solubility and antitumor activity of natural β -elemene. Herein, we report synthesis, *in vitro* and *in vivo* antitumor activity, and anticancer mechanism for a new class of β -elemene isopropanolamine derivatives with improved aqueous solubility. E-mail addresses: hyao@cpu.edu.cn (H. Yao), Zheying.Zhu@nottingham.ac.uk (Z. Zhu), jinyixu@china.com (J. Xu). ^{*} Corresponding authors. J. Chen et al. Fitoterapia 120 (2017) 117–125 Scheme 1. Synthetic routes of the title compounds 6a-6q. Reagents and conditions: (a) NaClO, HOAc/CH₂Cl₂, 0-5 °C, 6 h, 55%; (b) DMF, NaOAc, 120 °C, 8 h, 75%; (c) MeOH/CHCl₃, KOH, reflux, 2 h, 85%; (d) separated by HPLC, Hexane/EtOH = 98/2 (V/V), UV = 214 nm; (e) epibromohydrin, NaH, anhydrous DMF, rt, 3 h, 72%; (f) amines, *Cat.* Zn(ClO₄)₂6H₂O, 80 °C, 1 h, 58–84%. #### 2. Results and discussions #### 2.1. Chemistry The synthesis of β -elemene isopropanolamine derivatives $\bf 6a-6q$ was shown in Scheme 1. Chlorination of β -elemene (1) with NaClO produced the chlorinated mixture of $\bf 2a$ and $\bf 2b$, followed by treatment with AcONa to give the acylated compounds $\bf 3a$ and $\bf 3b$. The resulting products were subjected to alkaline hydrolysis to produce a mixture of $13-\beta$ -elemol ($\bf 4a$) and $14-\beta$ -elemol ($\bf 4b$), which was separated by HPLC to provide the main component $\bf 4a$ [18]. Subsequent alkylation of $\bf 4a$ with epibromohydrin in the presence of NaH gave the epoxide intermediate 5, which was further reacted with different amines in the presence of a catalytic amount of $\rm Zn(ClO_4)_2-6H_2O$ to obtain the target compounds $\bf 6a-6q$ [19]. #### 2.2. Pharmacology #### 2.2.1. In vitro antiproliferative activity Initially, β -elemene isopropanolamine derivatives **6a–6q** were examined for their antiproliferative activities against three cancer cell lines (SGC-7901: human gastric carcinoma; HeLa: human cervical adenocarcinoma; U87: human glioblastoma). As shown in Table 1, all of the derivatives exhibited stronger activities than parent compound β -elemene, and some of them even showed preferable activities than positive control cisplatin, suggesting that introduction of an isopropanolamine moiety was beneficial for the antitumor activity of β -elemene. Aliphatic (**6a**), naphthenic (**6b–6g**) and aryl (**6h–6n**) amines showed nearly the same activity, approximately 3- to 10-fold more potent than β -elemene. When the amine was benzylamine (**6o**) or phenoxyethylamine (**6p**) containing a free NH, the activity was markedly improved with IC₅₀ values of 10~20 μ M on all tested cell lines. It is interesting that among these derivatives, dimer **6q** exhibited the **Table 1** Antiproliferative activities of β -elemene isopropanolamine derivatives against three cancer cell lines. | Compd | Cell lines (IC ₅₀ ^a , μM) | | | |------------------|---|------------------|------------------| | | SGC-7901 | HeLa | U87 | | β -Elemene | 236.27 ± 18.41 | 213.51 ± 15.23 | 179.72 ± 15.37 | | 6a | 43.32 ± 3.78 | 36.26 ± 3.86 | 49.00 ± 5.44 | | 6b | 42.86 ± 4.43 | 29.96 ± 1.89 | 35.02 ± 3.92 | | 6c | 24.33 ± 2.67 | 29.45 ± 3.95 | 37.93 ± 3.08 | | 6d | 44.87 ± 5.54 | 52.29 ± 4.72 | 39.07 ± 2.58 | | 6e | 31.25 ± 2.47 | 26.42 ± 0.87 | 23.99 ± 1.69 | | 6f | 37.75 ± 1.55 | 31.81 ± 2.98 | 38.20 ± 5.14 | | 6g | 49.23 ± 1.82 | 20.79 ± 3.43 | 22.12 ± 0.96 | | 6h | 56.76 ± 4.29 | 55.77 ± 6.17 | 56.36 ± 3.63 | | 6i | 34.42 ± 2.86 | 41.19 ± 3.74 | 38.92 ± 4.51 | | 6j | 51.89 ± 5.89 | 37.95 ± 3.28 | 66.05 ± 5.43 | | 6k | 26.41 ± 1.09 | 22.67 ± 1.65 | 28.50 ± 2.83 | | 61 | 65.16 ± 5.13 | 39.88 ± 4.78 | 54.86 ± 3.62 | | 6m | 50.27 ± 4.42 | 66.53 ± 3.21 | 61.47 ± 6.46 | | 6n | 36.49 ± 3.63 | 35.49 ± 1.03 | 57.41 ± 5.86 | | 6o | 21.40 ± 1.22 | 10.04 ± 0.52 | 12.63 ± 1.04 | | 6р | 15.40 ± 1.67 | 9.42 ± 0.73 | 10.50 ± 0.91 | | 6q | 4.37 ± 0.51 | 7.56 ± 0.65 | 10.20 ± 0.76 | | Cisplatin | 9.09 ± 0.83 | 16.28 ± 1.06 | 21.39 ± 1.91 | $[^]a$ IC $_{50}$: concentration of the test compound that inhibits 50% of cell growth. Results are expressed as the mean $\,\pm\,$ SD (n = 3). strongest activity with IC_{50} values of 4.37, 7.56 and 10.20 μ M against SGC-7901, HeLa and U87 cells, respectively, which was superior to cisplatin with IC_{50} values of 9.09, 16.28 and 21.39 μ M, respectively. 2.2.2. In vitro antiproliferative activity of 6q in combination with cisplatin It was reported that β -elemene increased the sensitivity of several cancer cells and even reversed the resistance to cisplatin [20–24]. In order to investigate whether 6q could induce sensitization to cisplatin, #### Download English Version: ### https://daneshyari.com/en/article/5554958 Download Persian Version: https://daneshyari.com/article/5554958 <u>Daneshyari.com</u>