EL SEVIER

Contents lists available at ScienceDirect

Fitoterapia

journal homepage: www.elsevier.com/locate/fitote

Aristolochic acid derivatives from the rhizome of Arisolochia championii

Xin Wang, Guo-Ru Shi, Yan-Fei Liu, Li Li, Ruo-Yun Chen, De-Quan Yu*

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China

ARTICLE INFO

Article history: Received 22 December 2016 Received in revised form 17 January 2017 Accepted 21 January 2017 Available online 27 January 2017

Keywords: Aristolochia Aristolochia championii Aristolochic acid Aristchamic A–D Cytotoxic activity

ABSTRACT

Four new aristolochic acid derivatives aristchamic A (1), aristchamic B (2), aristochamic C (3a), aristchamic D (3b) and one new aristolactam aristolactam-CV (4), together with 10 known compounds (5–14), were isolated from the rhizomes of *Aristolochia championii*. Their structures were assigned by detailed analysis of MS and NMR spectroscopic data. All of the isolated compounds were evaluated for their cytotoxic activities against HCT-116, HepG2, BGC-823, NCI-H1650, and A2780 cell. Compound 1 exhibited significant cytotoxic activity against HCT-116, HepG2, BGC-823, and NCI-H1650, with IC_{50} values of 0.50, 7.37, 2.66, and 0.75 μ M, respectively.

© 2017 Published by Elsevier B.V.

1. Introduction

Aristolochia championii Merr. et Chun., a member of genus Aristolochia from aristolochiaceae family, is an herbaceous plant mainly distributed in the southwest of China [1]. Aristolochia species were previous reported to possess abundant bioactive components, such as diverse aristolochic acids [2–5], aristolactams [6,7], alkaloids [8], and terpenoids [9,10]. With the aim of searching novel bioactive constituents from this genus, phytochemical investigations were conducted with the rhizome of *A. championii* and resulted in the isolation and structural identification of four new aristolochic acid derivatives aristchamic A (1), aristchamic B (2), aristchamic C (3a), aristchamic D (3b) and one new aristolactam aristolactam—CV (4), together with 10 known compounds (5–14). Their cytotoxic activities against HCT-116, HepG2, BGC-823, NCI-H1650, and A2780 cell were also evaluated.

2. Experimental

2.1. General experimental procedures

Optical rotations were measured on a JASCO P-2000 polarimeter, and UV spectra with a JASCO V-650 spectrophotometer (JASCO Corporation, Tokyo, Japan). IR spectra were recorded on a Nicolet 5700 spectrometer (Thermo Electron Scientific Instruments Corp.) by an FT-IR microscope transmission method. CD spectra were measured on a JASCO-815 CD spectrometer. NMR measurements were performed on Bruker AV500-III

and Bruker AV 600 IIIHD spectrometers using TMS as an internal reference (Bruker Biospin Corporation, Fallanden, Switzerland) in CDCl₃ and DMSO. HRESIMS were obtained using an Agilent 1100 series LC/MSD ion trap mass spectrometer (Agilent Technologies, Santa Clara, CA, USA). Silica gel (200–300 mesh, Qingdao Marine Chemical Factory, Qingdao, China), Sephadex LH-20 (GE), and ODS (50 μm , YMC, Kyoto, Japan) were used for column chromatography. Analytical thin-layer chromatography (TLC) was carried out with GF254 plates (Qingdao Marine Chemical Factory). Preparative HPLC experiments were performed on a preparation YMC-Pack ODS-column (10 μm , 250 \times 20 mm; YMC, Kyoto, Japan) or a Chiralpak AD-H column (5 μm , 250 \times 20 mm; Daicel Chiral Technologies Co. Ltd., Shanghai, China) equipped with Shimadzu SPD-6A UV spectrophotometric detector (Shimadzu, Kyoto, Japan) and Shimadzu LC-6AD pumping system. Spots were visualized by spraying with 10% H_2SO_4 in 95% EtOH followed by heating.

2.2. Plant material

The rhizomes of *Aristolochia championii* Merr. et Chun were purchased from the Yulin City, Guangxi Province, China, in June 2014, and were identified by associate professor Lin Ma (Institute of Materia Medica, Chinese Academy of Medical Science & Peking Union Medical College). A voucher specimen (ID-S-2566) has been deposited at the Herbarium of Institute of Materia Medica, Chinese Academy of Medical Science & Peking Union Medical College, Beijing.

2.3. Extraction and isolation

Air-dried rhizomes of *Aristolochia championii* (60 kg) were extracted three times with 95% EtOH (3×150 L) under reflux (2 h each). The

^{*} Corresponding author. *E-mail address*: dqyu@imm.ac.cn (D.-Q. Yu).

combined extracts were concentrated under reduced pressure to dryness. The residue (3 kg) was subjected to fractionation using silica gel eluted with petroleum ester, CH₂Cl₂, EtOAc, acetone and MeOH, successively, to give five fractions (A, B,C, D, and E, respectively). The CH₂Cl₂ fraction (230 g) was applied to a silica gel eluted gradient with CHCl₃/ MeOH (200:1–50:1, v/v) to afford seven major fractions (B_1-B_7). Fraction B₃ (10.6 g) was chromatographed on silica gel (petroleum ester-Me₂CO 20:1–4:1, v/v) to give subfractions $B_{3-1}-B_{3-20}$, fraction B₃₋₅ was followed by Sephadex LH-20 column (CHCl₃:MeOH 50:50) to give five subfractions ($B_{3-5-1}-B_{3-5-5}$). Fraction B_{3-5-2} was purified by preparative HPLC (MeOH:H₂O, 85:15) to yield 1 (12 mg), and B_{3-5-3} also was purified by preparative HPLC (MeOH: H_2O , 75:25) to yield **2** (14 mg), **5** (27 mg). B₃₋₅₋₄ was chromatographed over silica gel eluted with CHCl₃/MeOH (100:1, v/v) to give 6 (21 mg) and 7 (12 mg). Fraction B_{3-13} and B_{3-15} were subjected separately to separation over Sephadex LH-20 (MeOH) to yield 8 (47 mg) from B₃₋₁₃ and 9 (14 mg) from B_{3-17} . Fraction B_5 (14.7 g) was subjected to a silica gel column chromatography and eluted with a step gradient of petroleum ester-Me₂CO (50:1-2:1, v/v) to yield five subfractions $(B_{5-1}-B_{5-5})$. Fraction B_{5-3} was purified by Sephadex LH-20 column (MeOH) to yield 4 (11 mg). Fraction B_{5-4} was purified by preparative HPLC (MeOH:H₂O, 80:20) to yield **10** (11 mg) and **11** (8 mg). Fraction B₅₋₄ was also purified by preparative HPLC (MeOH:H₂O, 75:25) to yield **12** (16 mg). Fraction B₆ (14.2 g) was chromatographed on RP- C_{18} silica gel to obtain 14 subfractions (B_{6-1} – B_{6-14}). Fraction B_{6-10} was subjected to a Sephadex LH-20 column (MeOH) and purified by preparative HPLC (acetonitrile:H₂O, 60:40) to yield **3** (9 mg) and **14** (21 mg). Subsequent separation of 3 by HPLC on a semi-preparative Chiralpak AD-H column (n-hexane:iPtOH, 1:1, 2.0 mL/min) afforded 3a (4.2 mg, $t_R = 9.0 \,\text{min}$) and **3b** (4.1 mg, $t_R = 15.2 \,\text{min}$). Fraction B₆₋₁₂ was further separated by repeated Sephadex LH-20 column chromatography to afford 13 (32 mg).

2.3.1. Aristchamic A (1)

Yellow solid; $[\alpha]_D^{20} - 179.8$ (0.10, CHCl₃); UV (CHCl₃) $\lambda_{\rm max}$ (log ε) 239 (4.01), 267 (4.58), 314 (3.92), 326 (3.79) nm; IR (KBr) $\nu_{\rm max}$ 3360, 2955, 2920, 1720, 1611, 1553 cm⁻¹; ¹H and ¹³C NMR data see Table 1; HRESIMS (positive) m/z 388.1039 [M + H]⁺ (calcd. for C₁₉H₁₈NO₈, 388.1027).

2.3.2. Aristchamic B (2)

Yellow solid; $[\alpha]_D^{20} + 23.9$ (0.27, CHCl₃); UV (CHCl₃) λ_{max} (log ϵ) 241 (4.41), 258 (4.36), 311 (4.24) nm; CD (CHCl₃) λ_{max} ($\Delta\epsilon$) 250 (+0.28), 298 (-0.28), 341 (+0.58); IR (KBr) ν_{max} 3481, 1750, 1708, 1621 cm⁻¹; ¹H and ¹³C NMR data see Table 1; HRESIMS (positive) m/z 362.0868 [M + H]⁺ (calcd. for C₁₇H₁₆NO₈, 362.0870).

2.3.3. Aristchamic C (3a) and aristchamic D (3b)

Yellow solid; UV (CHCl₃) $\lambda_{\rm max}$ (log ϵ) 242 (4.82), 262 (4.78), 284 (4.55), 325 (4.28), 395 (4.16) nm; IR (KBr) $\nu_{\rm max}$ 3471, 1715, 1610 cm⁻¹; ¹H and ¹³C NMR data see Table 1; HRESIMS (positive) m/z 574.1298 [M + Na]⁺ (calcd. for C₂₈H₂₅NO₁₁Na, 574.1320).

3a: Yellow solid; $[\alpha]_D^{20} - 21.6$ (0.04, CHCl₃); CD (CHCl₃) λ_{max} ($\Delta\epsilon$) 246 (+0.44), 318 (+0.31).

3b: Yellow solid; $[\alpha]_0^{20} + 19.7 (0.04, CHCl_3)$; CD (CHCl₃) $\lambda_{max} (\Delta \epsilon)$ 243 (-0.24), 222 (-0.16).

2.3.4. Aristolactam-CV (4)

Yellow solid; UV (CHCl₃) $\lambda_{\rm max}$ (log ε) 232 (4.18), 256 (4.29), 278 (4.35), 288 (4.37) nm; IR (KBr) $\nu_{\rm max}$ 3492, 1687, 1652 cm⁻¹; ¹H and ¹³C NMR data see Table 1; HRESIMS (positive) m/z 296.0925 [M + H]⁺ (calcd. for C₁₇H₁₄NO₄, 296.0917).

Table 1¹H NMR and ¹³C NMR spectral data for **1–4**.

No.	1 ^a		2 ^a		$3a^{\mathrm{b}}$ and $3b^{\mathrm{b}}$		5 °	
	δ _H (J in Hz)	δ_{C}	δ _H (J in Hz)	δ_{C}	δ _H (J in Hz)	δ_{C}	δ _H (J in Hz)	δ_{C}
1		124.6		173.4		120.7		131.3
2	7.49 (s)	109.9		76.4	7.78 (s)	121.0		119.1
3		148.1	3.20 (d, 18.7) 3.13 (d, 18.7)	40.5		144.5		148.6
4		149.1		201.0		141.2		150.4
4a		119.4		131.2		122.0		119.2
4b		130.5		138.4		132.7		125.6
5	7.38 (d, 2.3)	104.1	8.28 (d, 1.6)	96.4	8.64 (d, 1.7)	102.7	9.05 (d, 7.2)	126.5
6		159.8		166.2		161.7	0	125.4
7	6.47 (d, 2.3)	98.9	6.67 (d, 1.6)	100.7	6.88 (d, 1.7)	99.4	0	127.2
8		157.6		158.4		157.4	7.97 (d, 7.0)	129.1
8a		111.9		128.8		114.5		134.5
9	4.23 (dd, 17.6, 2.4) 2.81 (dd, 17.6, 5.4)	26.5	9.35 (s)	121.6	8.60 (s)	120.0	7.16 (s)	104.7
10	6.67 (dd, 2.4, 5.4)	78.8		149.1		142.7		135.1
10a		126.2		134.3		116.9		121.7
11		166.6				166.7		169.6
12	6.28 (d, 1.4) 6.13 (d, 1.4)	102.4					5.11 (s)	59.8
1'						126.5		
2′					7.25 (d, 1.7)	112.0		
3′						147.7		
4′						147.4		
5′					6.87 (d, 8.1)	115.5		
6′					7.08 (dd,8.1,1.7)	120.7		
7′					5.22 (d, 8.3)	77.3		
8′					4.54 (m)	77.8		
9′					3.69 (m) 3.48 (m)	60.4		

o: overlapped.

^a Recorded at 500 MHz (¹H NMR) and 125 MHz (¹³C NMR) in CDCl₃.

^b Recorded at 600 MHz (¹H NMR) and 150 MHz (¹³C NMR) in DMSO.

 $^{^{\}rm c}$ Recorded at 500 MHz ($^{\rm 1}$ H NMR) and 125 MHz ($^{\rm 13}$ C NMR) in DMSO.

Download English Version:

https://daneshyari.com/en/article/5555121

Download Persian Version:

https://daneshyari.com/article/5555121

<u>Daneshyari.com</u>